Use of concrete thermal inertia for buildings energy savings

Main Article Content

Maribel Medina
Evelina Kaiser
Raúl López
Carolina Domizio
Lautaro Santillán

Abstract

Global warming problems require to study different alternatives to stop it, and power generation and consume play a very important role in this regard, mainly in countries like Argentina, where power is mostly generated from fossil fuels. The amount of energy consumed by buildings is directly linked to their energy efficiency, and to size its thermal system, calculation tools based on thermal transmittance and stationary heat flow are used. This methodology has the virtue of simplicity, but it does not take into account the heat storage capacity or its flow, that is, it does not consider the thermal inertia present in materials such as concrete or masonry. This property, together with an adequate bioclimatic design, allows to reduce energy requirements and achieving more comfortable environments. In this work, through simplified mathematical models, concrete walls with different densities and thicknesses were simulated, and their thermal capacity and admittance were calculated. These parameters easily quantify the beneficial effects of thermal inertia: the time delay of outdoor and indoor temperature peaks, and the damping of thermal amplitude inside the building.

Article Details

How to Cite
Medina, M., Kaiser, E., López, R. ., Domizio, C. ., & Santillán, L. (2021). Use of concrete thermal inertia for buildings energy savings. Ingenio Tecnológico, 3, e018. Retrieved from https://ingenio.frlp.utn.edu.ar/index.php/ingenio/article/view/47
Section
Artículos

References

ACI MCP. (2014). ACI 122R-02, Guide to thermal properties of concrete and masonry systems. ACI.

CIBSE. (2013). Module 48: Simple thermal analysis for buildings. Obtenido de https://www.cibsejournal.com/cpd/modules/2013-01/

Gonzalo, G. (2015). Manual de Arquitectura Bioclimática y Sustentable.

Hernandez, A. (2014). Sistemas pasivos y activos de acondicionamiento térmico de edificios. Universidad Tecnológica Nacional - Facultad Regional Mendoza.

HTflux. (2018). A brief guide and free tool for the calculation of the thermal mass of building components. Obtenido de https://www.htflux.com/en/free-calculation-tool-for-thermal-mass-of-building-components-iso-13786/

Instituto del Cemento Portland Argentino. (2013a). Aprovechamiento de la masa térmica del hormigón. Obtenido de https://web1.icpa.org.ar/wp-content/uploads/2019/04/ICPA-AT-501_Aprovechamiento_de_la_masa_termica_del_hormigon.pdf

Instituto del Cemento Portland Argentino. (2013b). Eficiencia energética en viviendas. Obtenido de http://web1.icpa.org.ar/wp-content/uploads/2019/04/ICPA-AT-502_Eficiencia_energetica_de_viviendasb.pdf

Instituto Español del Cemento y sus Aplicaciones. (2019). Manual de Aplicación de la Inercia Térmica.

Instituto Torroja. (2017). La inercia térmica del hormigón como herramienta para el diseño y construcción. Obtenido de https://www.youtube.com/watch?v=UOZEt77bYQA

International Energy Agency. (2019). Data and statistics. Obtenido de https://www.iea.org/data-and-statistics/?country=ARGENTINAyfuel=CO2%20emissionsyindicator=CO2BySector

International Energy Agency. (2020). World Energy Balances: Overview. Obtenido de https://www.iea.org/reports/world-energy-balances-overview

Intituto del Cemento Portland Argentino - Institudo Español del Cemento y sus Aplicaciones. (2020). Webinar: Eficiencia energética en edificios. El papel del hormigón: inercia térmica. Obtenido de https://www.youtube.com/watch?v=H7iTed5U2vg

Mac Donell, H. P., y Mac Donell, H. (1999). Manual de la construcción industrializada. Revista Vivienda, Buenos Aires (ISBN: 987-97522-0-1).

Mackres, E. (2016). 4 Surprising Ways Energy-Efficient Buildings Benefit Cities. World Resources Institute. Obtenido de https://www.wri.org/blog/2016/05/4-surprising-ways-energy-efficient-buildings-benefit-cities

Muñoz Vásquez, N., y Thomas, L. (2015). Comportamiento térmico dinámico de muros típicos utilizando el método de la admitancia. Avances en Energías Renovables y Medio Ambiente, 36(9), 31-35

Saint Gobain. (s.f.). Comforts and solutions - Thermal comfort. Obtenido de http://gobain.com/comforts-and-solutions/thermal-comfort

Schokker, A. J. (2010). The sustainable concrete guide, strategies and examples. U.S. Green Concrete Council.

Subsecretaría de Planeamiento Energético. (2019). Escenarios energéticos 2030.

The Concrete Center. (2010). Dynamic Thermal Properties Calculator. Obtenido de https://www.concretecentre.com/Publications-Software/Publications/Dynamic-Thermal-Properties-Calculator.aspx