Micro-cogeneration systems combining solar PV, combined heat and power plant (CHP) and battery storage

Main Article Content

Adrián Gonnet
Marcelo Anton
Carlos Mainetti
Eduardo Guillermo
Fernando Borja
Luciano Bournod

Abstract

The development of micro-grids using hybrid systems that include micro-cogeneration, is an interesting alternative to improve the efficiency in the supply of electricity and heat Thermal comfort to buildings. In addition, with these systems, the use of renewable energy sources is increased with the consequent reduction of greenhouse gases. This research examines the efficiency, and cost of hybrid systems connected to the electricity grid, comprising fuel cell combined heat and power (CHP), solar PV and battery storage. The energy demand is the electricity and heat of Facultad Regional Bahía Blanca building. This paper presents simulation results for different configurations and operations conditions of the systems, which allow determining the optimal configuration, producing 90% of electricity consumption, with a total cost for users, similar to the traditional electricity supply. With the use of CHP equipment, the purchase of electricity from the grid is reduced by 35% and 37% of the total heat required by the building is produced by cogeneration.

Article Details

How to Cite
Gonnet, A. ., Anton, M. ., Mainetti, C., Guillermo, E., Borja, F., & Bournod, L. (2021). Micro-cogeneration systems combining solar PV, combined heat and power plant (CHP) and battery storage. Ingenio Tecnológico, 3, e023. Retrieved from https://ingenio.frlp.utn.edu.ar/index.php/ingenio/article/view/e023
Section
Trabajos destacados del “XI Seminario de Energía y su Uso Eficiente”

References

Balcombe, P., Rigby, D., & Azapagic, A. (2015a). Environmental impacts of microgeneration: Integrating solar PV, Stirling engine CHP and battery storage. Applied Energy, 139, 245-259.

Balcombe, P., Rigby, D., & Azapagic, A. (2015b). Energy self-sufficiency, grid demand variability and consumer costs: Integrating solar PV, Stirling engine CHP and battery storage. Applied Energy, 155, 393-408.

ene.field. (2020). Fuel cell x Combined Heat and Power. Recuperado de: http://enefield.eu/field-trials/introduction/

Ghenai, C., & Bettayeb, M. (2019). Grid-tied solar PV/fuel cell hybrid power system for University Building. Energy Procedia, 159, 96-103.

Gonnet, A., Mainetti, C., Guillermo, E. (2018a). Análisis sobre la utilización de un sistema de generación distribuida que integra electricidad y calor para aplicación residencial en la Argentina. III Congreso Argentino de Energías Sustentables.

Gonnet, A., Guillermo, E., Mainetti, C. (2018b). Eficiencia y Costo de los sistemas de energía distribuida que integran electricidad y calor para uso residencial. VII Seminario de Energías y su Uso eficiente.

Gonnet, A., Guillermo, E., Mainetti, C. (2019). Generación Distribuida a Escala Residencial con la Utilización de Sistemas Micro CHP, Desafíos y Oportunidades para su Aplicación en la Provincia de Buenos Aires. Tercer congreso de investigación y transferencia tecnológica en ingeniería eléctrica Cittie 2019. Octavo seminario nacional de energía Sene 2019.

Kneiske, T. M., & Braun, M. (2017). Flexibility potentials of a combined use of heat storages and batteries in PV-CHP hybrid systems. Energy Procedia, 135, 482-495.

Kuwaba, K. (2013). Development of SOFC for residential use by Aisin Seiki. 9th FC Expo.

Yamada, Y., & Nishizaki, K. (2009). Next generation model of the world’s first residential PEMFC cogeneration system goes on sale. 24th World Gas Conference. Buenos Aires, Argentina.