Introducción a los sensores de fibra óptica para el monitoreo de salud de estructuras civiles

Contenido principal del artículo

Diego H. Alustiza
Anahí López
Marcos Mineo
Nélida A. Russo
Yury A. Villagrán Zaccardi

Resumen

El monitoreo de salud de estructuras civiles (SHM, Structural Health Monitoring) es una de las principales herramientas disponibles para la ejecución de tareas de mantenimiento predictivo. La evolución de las tecnologías asociadas a las comunicaciones ópticas en los últimos 30 años, propició la aparición de diferentes tipos de sensores de fibra óptica (OFS, Optical Fiber Sensors) cuya aplicabilidad en el campo de las técnicas de medición vinculadas al SHM ha sido demostrada. El desempeño de varios tipos de OFS fue ampliamente evaluado tanto en el laboratorio como en campo, para la determinación de algunos procesos físico/químicos
y de magnitudes de gran interés ingenieril. En este trabajo se brinda el panorama actual de los OFS dentro de los esquemas de medición más empleados en SHM. Se mencionan las diferentes magnitudes y procesos térmicos, químicos y mecánicos reportados hasta el momento que son susceptibles de ser analizados a través del uso de OFS en estrategias de monitoreo de estructuras civiles.

Detalles del artículo

Cómo citar
Alustiza, D. H. ., López, A. ., Mineo, M. ., Russo, N. A. ., & Villagrán Zaccardi, Y. A. . (2022). Introducción a los sensores de fibra óptica para el monitoreo de salud de estructuras civiles. Ingenio Tecnológico, 4, e027. Recuperado a partir de https://ingenio.frlp.utn.edu.ar/index.php/ingenio/article/view/62
Sección
Artículos

Citas

Abbas, Y., Pargar, F., Koleva, D. A., van Breugel, K., Olthuis, W., & van den Berg, A. (2018). Non-destructive measurement of chloride ions concentration in concrete – A comparative analysis of limitations and prospects. Constructionand Building Materials, 174, 376–387.

ACI, C. (2002). Service-LifePrediction—State-of-the-Art Report - ACI 365.1R-00.

Agrawal, G. P. (2004). Lightwave Technology. USA: John Wiley & Sons, Inc.

Alustiza, D. H., Mineo, M., & Russo, N. A. (2021). Characterization of Long Period Gratings Manufactured with Fiber Optic Fusion Splicer for Sensor Development. Latin American Applied Research, 51(1), 21-26.

Alustiza, D. H., Mineo, M., Aredes, D., & Russo, N. A. (2019). Fabricación Local de Sensores de Fibra Óptica Aplicables al Sensado de Magnitudes Relevantes en Ingeniería Civil. Ingenio Tecnológico, 1, 10.

Alustiza, D. H., Mineo, M., Aredes, D., Gara, P. M., Arce, V. B., & Russo, N. A. (2020). Sensitivity Improvement of an LPG-based Fiber Optic Humidity Sensor. IEEE Xplore, 5.

Alustiza, D. H., Mineo, M., Aredes, D., Vaio, E., & Russo, N. A. (2021). Manufacture of Long Period Fiber Gratings for the Development of Optical Sensors. IEEE Xplore.

Alustiza, D. H., Mineo, M., López, A., Villagrán Zaccardi, Y. A., & Russo, N. A. (2020). Desarrollo de Sensores de Fibra Óptica para la Determinación de Humedad en Mezclas Cementíceas. En M. C. Torrijos, & C. Zega (Ed.), IX Congreso Internacional y 23ª Reunión Técnica. Asociación Argentina de Tecnología del Hormigón (AATH)., (págs. 411-418). La Plata, Buenos Aires, Argentina.

Ambrose, T. P., Huston, D. R., & Fuhr, P. L. (1992). Lessons learned in embedding fiber sensors into large civil structures. Fiber Optic Smart Structures and Skins V. 1798. SPIE.

Ansari, F. (2007). Practical Implementation of Optical Fiber Sensors in Civil. Structural Health Monitoring. Journal of Intelligent Material Systems and Structures, 18, 879-889.

Asriani, F., Pamudji, W., & Pamudji, G. (2021). Sensitivity of Optical Fiber Sensors to Deflection of Reinforced Concrete Beam. ICETIR 2020, 982.

Baldini, F. (1999). Critical review of pH sensing with optical fibers. Proceedings of SPIE, 2-9.

Barrias, A., Rodriguez, G., Casas, J. R., & Villalba, S. (2018). Application of distributed optical fiber sensors for the health monitoring of two real structures in Barcelona. Structure and Infrastructure Engineering, 1-19.

Basheer, P. M., Sun, T., Grattan, K. T., & Long, A. E. (2004). Fiber optic chemical sensor systems for monitoring pH changes in concrete. Proceedings of SPIE.

Bassil, A. (2019). DistributedFiber Optics Sensing for Crack Monitoring of Concrete Structures. Université de Nantes.

Bhatia, V., Murphy, K. A., Claus, R. 0., Tran, T. A., & Greene, J. A. (1995). Recent developments in optical-fiber-based extrinsic Fabry-Perot interferometric strain sensing technology. Smart Materials and Structures, 4, 246-251.

Caldas, P., & Rego, G. (2021). Optical Fiber Interferometers Based on Arc-Induced Long Period Gratings at INESC TEC. Sensors, 2021(21), 1-22.

Chen, X., Shen, F., Wang, Z., Huang, Z., & Wang, A. (2006). Micro-air-gap based intrinsic Fabry–Perot interferometric fiber-optic sensor. AppliedOptics, 45(30), 7760-7766.

Correia, S. F., Antunes, P., Pecoraro, E., Lima, P. P., Varum, H., Carlos, L. D., . . . André, P. S. (2012). Optical Fiber Relative Humidity Sensor Based on a FBG with a Di-Ureasil Coating. Sensors, I12, 8847-8860.

Culshaw, B. (2006). The optical fibre Sagnac interferometer: an overview of its principles and applications. MeasurementScience and Technology, 17, R1-R16.

Di, H., Xin, Y., & Jian, J. (2018). Review of optical fiber sensors for deformation measurement. Optik, 168, 703–713.

Farhad, A. (Ed.). (2005). Sensing Issues in Civil Structural Health Monitoring. Netherlands: Springer.

Feng, X., Zhang, X., Sun, C., Motamedi, M., & Ansari, F. (2014). Stationary Wavelet Transform Method for Distributed Detection of Damage by Fiber-Optic Sensors. Journal of Engineering Mechanics, 1-11.

Fernandez, I., Berrocal, C. G., & Rempling, R. (2021). Long-Term Performance of Distributed Optical Fiber Sensors Embedded in Reinforced Concrete Beams under Sustained Deflection and Cyclic Loading. Sensors, 21, 1-20.

Folić, R., & Zenunović, D. (2010). Durability Design of Concrete Structures - Part 2: Modelling and Structural Assessment. Facta Universitatis - Series: Architecture and Civil Engineering, 8(1), 45 - 66.

Fuhr, P., & Huston, D. (2000). Fiber Optic Chloride Threshold Detectors for Concrete Structures. Journal of Structural Control, 7(1), 77-102.

Gangopadhyay, T. K., Majumder, M., Chakraborty, A. K., Dikshit, A. K., & Bhattacharya, D. K. (2009). Fibre Bragg grating strain sensor and study of its packaging material for use in critical analysis on steel structure. Sensorsand Actuators, A 150, 78–86.

Gjørv, O. E. (2011). Durability of Concrete Structures. Arabian Journal for Science and Engineering, 36, 151–172.

Glisic, B., & Inaudi, D. (2007). Fibre Optic Methods for Structural Health Monitoring. England: John Wiley & Sons Ltd.

Gómez, J., Casas, J. R., & Villalba, S. (2020). Structural Health Monitoring with Distributed Optical Fiber Sensors of tunnel lining affected by nearby construction activity. Automationin Construction, 117(2020).

Habel, W. R., & Hillemeier, B. (1995). Results in monitoring and assessment of damages in large steel and concrete structures by means of FOSs. Smart Structures and Materials, 2446, 25-36.

Habel, W. R., Höpcke, M., Basedau, F., & Poister, H. (s.f.). The Influence of concrete and alkaline solutions on different surlaces of optical fibres for sensors. SecondEuropean Coni. on Smart Structures and Materials. 1994.

Hartog, A. H. (2017). An Introduction to Distributed Optical Fibre Sensors. USA: CRC Press.

Hoffmann, L., Müller, M. S., Krämer, S., Giebel, M., Schwotzer, G., & Wieduwilt, T. (2007). Applications of fibre optic temperature measurement. Proc. Estonian Acad. Sci. Eng., 13(4), 363–378.

Kesavan, K., Ravisankar, K., Parivallal, S., Sreeshylam, P., & Sridhar, S. (2010). Experimental studies on fiber optic sensors embedded in concrete. Measurement, 43, 157–163.

Lecler, S., & Meyrueis, P. (2012). Intrinsic Optical Fiber Sensor. En Fiber Optic Sensors (págs. 53-76).

Lee, B. H., Kim, Y. H., Park, K. S., Eom, J. B., Kim, M. J., Rho, B. S., & Choi, H. Y. (2012). Interferometric Fiber Optic Sensors. Sensors, 12, 2467-2486.

Leung, C. (2001). Fiber optic sensors in concrete: the future? NDT&E International, 34, 85–94.

Li, Q., Yuan, L., & Ansari, F. (2002). Model for measurement of thermal expansion coefficient of concrete by fiber optic sensor. International Journal of Solids and Structures, 39, 2927–2937.

Liu, H.-y., Liang, D.-k., Zeng, J., Jin, J., Wu, J., & Geng, J. (2011). Design of a long-period fiber grating sensor for reinforcing bar corrosion in concrete. Journal of Intelligent Material Systems and Structures, 23(1), 45-51.

López-Higuera, J. M., Rodriguez Cobo, L., Quintela Incera, A., & Cobo, ,. A. (2011). Fiber Optic Sensors in Structural Health Monitoring. Journal of Lightwave Technology, 29(4), 587-608.

Lu, X., Thomas, P. J., & Hellevang, J. O. (2019). A Review of Methods for Fibre-Optic Distributed Chemical Sensing. Sensors, 2019(19), 1-20.

Luo, D., Li, J., & Li, Y. (2018). A review of fiber-optic corrosion sensor in civil engineering. AIP Conference Proceedings 1967, 020055.

Majumder, M., Gangopadhyay, T. K., Chakraborty, A. K., Dasgupta, K., & Bhattacharya, D. K. (2008). Fibre Bragg Gratings in Structural Health Monitoring- Present Status and Applications. Sensorsand Actuators, 147(1), 150-164.

Masri, S. F., Agbabian, M. S., Abdel-Ghaffar, A. M., Higazy, M., Claus, R. O., & de Vries, M. J. (1994). Experimental Study of Embedded Fiber-Optic Strain Gauges in Concrete Structures. Journal of Engineering Mechanics, 120(8), 1696-1717.

Measures, R. (1992). Smart Structures. A Revolution in Civil Engineering. In AdvancedComposite Materials in Bridges and Structures, 31-59.

Mendez, A., & Morse, T. F. (1989). Applications of Embedded Optical Fiber Sensors in Reinforced Concrete Buildings and Structures. Fiber Optic Smart Structures and Skins II. 1170. SPIE.

Merzbacher, C. I., Kersey, A. D., & Friebele, E. J. (1995). Fiber optic sensors in concrete structures: a review. Smart Mater. Struct, 5(1996), 196–208.

Monsberger, C. M., & Lienhart, W. (2021). Distributed fiber optic shape sensing along shotcrete tunnel linings: Methodology, field applications, and monitoring results. Journal of Civil Structural Health Monitoring, 11, 337–350.

Nanni, A., Yang, C., Wang, J. S., & Michael, R. (1991). Fiber optic sensors for concrete strain/stress measurement. ACI Materials Journal, 88(3), 257-264.

OECD. (2021). Building Resilience. New Strategies for Strengthening Infrastructure Resilience and Maintenance. OECD Public Governance Policy Papers No. 05.

Quirion, M., & Ballivy, G. (2000). Concrete Strain Monitoring with Fabry-Pérot Fiber-optic Sensor. Journal of Materials in Civil Engineering, 12(3), 254-261.

Rao, Y. (1999). Recent progress in applications of in-Fibre Bragg grating sensors. Optics and Lasers in Engineering, 31, 297-324.

Rao, Y.-J. (2006). Recent progress in fiber-optic extrinsic Fabry–Perot interferometric sensors. Optical Fiber Technology, 12, 227–237.

Rodriguez-Cobo, L., Marques, A. T., López-Higuera, J. M., Santos, J. L., & Frazao, O. (2013). New design for temperature–strain discrimination using fiber Bragg gratings embedded in laminated composites. Smart Materials and Structures, 22, 1-11.

Sabri, N., Aljunid, S., Salim, M., & Fouad, S. (2015). Fiber Optic Sensors: Short Review and Applications. En Springer Series in Materials Science (págs. 299-311).

Sahafnia, M. (2018). Concrete Structures Durability and Repair. Kansas: Kansas State University.

Santos Silva, K., Silva, F., Mahfoud, T., Khelidj, A., Brientin, A., Azevedo, A., Barbosa de Lima, A. (2021). On the Use of Embedded Fiber Optic Sensors for Measuring Early-Age Strains in Concrete. Sensors, 2021(21), 1-14.

Schizas, C., Stutz, S., Botsis, J., & Coric, D. (1994). Monitoring of non-homogeneous strains in composites with embedded wavelength multiplexed fiber Bragg gratings: A methodological study. Composite Structures, 94, 987–994.

Sharma, P., Pardeshi, S., Arora, R. K., & Singh, M. (2013). A Review of the Development in the Field of Fiber Optic Communication Systems. International Journal of Emerging Technology and Advanced Engineering, 3(5), 113-119.

Spillman, W. B., & Udd, E. (2014). Field Guide to Fiber Optic Sensors. (J. Greivenkamp, Ed.) Bellingham, Washington, USA: SPIE.

Sun, Y., Shi, B., Chen, S.-e., Zhu, H., Zhang, D., & Lu, Y. (2014). Feasibility study on corrosion monitoring of a concrete column with central rebar using BOTDR. Smart Structures and Systems, 13(1), 041-053.

Taylor, P., Tennis, P., Obla, K., Ram, P., Van Dam, T., & Dylla, H. (2013). Durabilityof Concrete, Transportation Research Circular E-C171. Washington, D.C.: Transportation Research Board.

Tennyson, R., Coroy, T., Duck, G., Manuelpillai, G., Mulvihill, P., Cooper, D. J., . . . Jalali, S. (2001). Fibre optic sensors in civil engineering structures. Canadian Journal of Civil Engineering, 27, 880-889.

Torres, B., Payá-Zaforteza, I., Calderón, P. A., & Adam, J. M. (2011). Analysis of the strain transfer in a new FBG sensor for Structural Health Monitoring. Engineering Structures, 33, 539-548.

Traversa, L., & Villagrán Zaccardi, Y. A. (2010). Introducción a la Durabilidad y Patología de las Estructuras de Hormigón Armado. IX Jornada “Técnicas de restauración y Conservación del Patrimonio". La Plata, Argentina.

Venu Gopal, M. A. (2011). Review on Developments in Fiber Optical Sensors and Applications. International Journal of Materials Engineering, 1(1), 1-16.

Wang, Y., & Huang, H. (2011). Optical fiber corrosion sensor based on laser light reflection. Smart Materials and Structures, 20, 1-7.

Willsch, R. (2000). Application of optical fiber sensors: technical and market trends. Proc. SPIE 4074, Applications of Optical Fiber Sensors, 4074, 24-31.

Wu, D., Zhu, T., Wang, G.-Y., Fu, J.-Y., Lin, X.-G., & Gou, G.-L. (2013). Intrinsic fiber-optic Fabry–Perot interferometer based. Applied Optics, 52(12), 2670-2675.

Wu, T., Liu, G., Fu, S., & Xing, F. (2020). Recent Progress of Fiber-Optic Sensors for the Structural Health Monitoring of Civil Infrastructure. Sensors, 20(4517), 1-26.

Yang, Y., Lu, L., Yang, F., Chen, Y., & Jin, W. (2015). The fiber optic Sagnac interferometer and its sensing application. IEEE Xplore.

Yang, Y., Zhang, X., Bai, H., Shao, H., Pan, H., Pang, F., & Wang, T. (2016). Force sensors based on intrinsic fiber Fabry-Perot interferometer fabricated by the femtosecond laser. Asia Communications and Photonics Conference (ACP). Wuhan, China: Optica Publishing Group.

Ye, X. W., Su, Y. H., & Han, J. P. (2014). Structural Health Monitoring of Civil Infrastructure Using Optical Fiber Sensing Technology: A Comprehensive Review. (T.-H. Yi, Ed.) The Scientific World Journal, 11.

Yeo, T. L., Cox, M. A., Boswell, L. F., Sun, T., & Grattan, K. T. (2006). Monitoring Ingress of Moisture in Structural Concrete Using a Novel Optical-Based Sensor Approach. Journalof Physics: Conference Series, 45, 186–192.

Yin, S., Ruffin, P. B., & Yu, F. T. (2008). Fiber Optic Sensors. (B. J. Thompson, Ed.) USA: CRC Press.

Yun, B., Wang, Y., Li, A., & Cui, Y. (2005). Simulated annealing evolutionary algorithm for the fibre Bragg grating distributed strain sensor. Measurement Science and Technology, 16, 2425–2430.

Zhang, A. P., Shao, L.-Y., Ding, J.-F., & He, S. (2005). Sandwiched Long-Period Gratings for Simultaneous Measurement of Refractive Index and Temperature. IEEE Photonics Technology Letters, 17(11), 2397-2399.

Zou, X., Chao, A., Tian, Y., Wu, N., Zhang, H., Yu, T.-Y., & Wang, X. (2012). An experimental study on the concrete hydration process using Fabry–Perot fiber optic temperature sensors. Measurement, 45, 1077–1082.

Zou, X., Chao, A., Wu, N., Tian, Y., Yu, T.-Y., & Wan, X. (2013). A novel Fabry-Perot fiber optic temperature sensor for early age hydration heat study in Portland cement concrete. Smart Structures and Systems, 12(1), 041-054.