Biocatalizadores mesoestructurados renovables: optimización en la producción sostenible de aromatizantes y saborizantes.
Contenido principal del artículo
Resumen
La industria de la Química Fina enfrenta el desafío de reducir su impacto ambiental sin comprometer la eficiencia de sus procesos. Así, la biotecnología ofrece una alternativa viable mediante el uso de reactivos ecoamigables y condiciones menos severas de operación que mejorarían el proceso tradicional. Este trabajo propone una ruta sostenible para la obtención de un soporte mesoporoso renovable derivado de biomasa, basado en la inmovilización enzimática sobre el mismo, combinando la selectividad de la proteína con la estabilidad del soporte. Para caracterizar la mesoporosidad del material se emplearon isotermas de adsorción de N2 y TEM. Además, mediante Espectroscopía IR-TF se evaluó la inmovilización enzimática, determinándose que con 96 h de inmovilización y 400 mglipasa/gsoporte se obtendría el mayor contenido de enzima soportada. El biocatalizador resultante fue evaluado en la transesterificación entre acetato de vinilo y alcohol isoamílico, produciendo acetato de isoamilo a 40 °C y presión atmosférica. Se alcanzó un rendimiento del 65 % mol a éster y una conversión del 86 % mol a 20 h de reacción. Estos resultados evidenciaron el potencial del biocatalizador para la síntesis de ésteres saborizantes y aromatizantes, ofreciendo una alternativa más sustentable en comparación con los métodos industriales convencionales.
Detalles del artículo

Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial-CompartirIgual 4.0.
Citas
Akinjokun, A. I., Ojumu, T. V. & Ogunfowokan, A. O. (2016). Biomass, Abundant Resources for Synthesis of Mesoporous Silica Material. In Microporous and Mesoporous Materials. https://doi.org/10.5772/63463
Alcántara, A. R., Hernaiz, M. J. & Sinisterra, J. V. (2011). Biocatalyzed Production of Fine Chemicals. In Comprehensive Biotechnology, Second Edition (Vol. 3, pp. 309–331). Elsevier Inc. https://doi.org/10.1016/B978-0-08-088504-9.00225-7
Ali, S., Khan, S. A., Hamayun, M. & Lee, I. J. (2023). The recent advances in the utility of microbial lipases: A Review. Microorganisms, 11, 510. https://doi.org/10.3390/microorganisms11020510
Amano, L. A. K. (2008). Lipase AK"Amano". Amano Labs, 1–2.
Barrett, E. P., Joyner, L. G. & Halenda, P. P. (1951). The Determination of Pore Volume and Area Distributions in Porous Substances. I. Computations from Nitrogen Isotherms. Journal of the American Chemical Society, 73(1), 373–380. https://doi.org/10.1021/ja01145a126
Benzaquén, T. B., Barrera, D. A., Carraro, P. M., Sapag, K., Alfano, O. M. & Eimer, G. A. (2018). Nanostructured catalysts applied to degrade atrazine in aqueous phase by heterogeneous photo-Fenton process. https://doi.org/https://doi.org/10.1007/s11356-018-2348-9
Carraro, P. M., Nope, E., Sathicq, Á. G., Romanelli, G. P. & Eimer, G. A. (2024). Effect of Hierarchical Architecture of Nickel Modified Mesoporous Catalysts on the Knoevenagel Condensation Reaction. ChemistrySelect, 9(43), e202402552. https://doi.org/10.1002/slct.202402552
Datta, S., Christena, L. R. & Rajaram, Y. R. S. (2013). Enzyme immobilization: an overview on techniques and support materials. 3 Biotech, 3(1), 1–9. https://doi.org/10.1007/s13205-012-0071-7
Dhake, K. P., Thakare, D. D. & Bhanage, B. M. (2013). Lipase: A potential biocatalyst for the synthesis of valuable flavour and fragrance ester compounds. Flavour and Fragrance Journal., 28(2), 71–83. https://doi.org/10.1002/ffj.3140
Dollimore, D., Spooner, P. & Turner, A. (1976). The BET Method of analysis of gas adsorption data and its relevance to the calculation of surface areas. Surface Technology, 4, 121.
Elías, Crivello, M., Herrero, E., Casuscelli, S. & Eimer, G. A. (2009). Some considerations to optimize the synthesis procedure and the structural quality of mesostructured silicas. Journal of Non-Crystalline Solids, 355(22–23), 1269–1273. https://doi.org/10.1016/j.jnoncrysol.2009.04.019
Elías, Sabre, E., Sapag, K., Casuscelli, S. & Eimer, G. (2012). Influence of the Cr loading in Cr/MCM-41 and TiO 2/Cr/MCM-41 molecular sieves for the photodegradation of Acid Orange 7. Applied Catalysis A: General, 413–414, 280–291. https://doi.org/10.1016/j.apcata.2011.11.019
Ferrero, G. O., Faba, E. M. S. & Eimer, G. A. (2021). Biodiesel production from alternative raw materials using a heterogeneous low ordered biosilicified enzyme as biocatalyst. Biotechnol Biofuels., 14(1), 1–11. https://doi.org/10.1186/s13068-021-01917-x
Ferrero, G. O., Rojas, H. J., Argaraña, C. E. & Eimer, G. A. (2016). Towards sustainable biofuel production: Design of a new biocatalyst to biodiesel synthesis from waste oil and commercial ethanol. Journal of Cleaner Production, 139, 495–503. https://doi.org/10.1016/J.JCLEPRO.2016.08.047
Lantos, J., Kumar, N. & Saha, B. (2024). A Comprehensive Review of Fine Chemical Production Using Metal-Modified and Acidic Microporous and Mesoporous Catalytic Materials. Catalysts, 14(5). https://doi.org/10.3390/catal14050317
Poornima, K. & Preetha, R. (2017). Biosynthesis of food flavours and fragrances - A review. Asian Journal of Chemistry, 29(11), 2345–2352. https://doi.org/10.14233/ajchem.2017.20748
Poppe, J. K., Garcia-Galan, C., Matte, C. R., Fernandez-Lafuente, R., Rodrigues, R. C. & Ayub, M. A. Z. (2013). Optimization of synthesis of fatty acid methyl esters catalyzed by lipase B from Candida antarctica immobilized on hydrophobic supports. Journal of Molecular Catalysis B: Enzymatic, 94, 51–56. https://doi.org/10.1016/j.molcatb.2013.05.010
Rios, N. S., Pinheiro, B. B., Pinheiro, M. P., Bezerra, R. M., dos Santos, J. C. S. & Barros Gonçalves, L. R. (2018). Biotechnological potential of lipases from Pseudomonas: Sources, properties and applications. Process Biochemistry., 75, 99–120. https://doi.org/10.1016/j.procbio.2018.09.003
Schoemaker, H. E., Mink, D. L. & WubboLts, M. G. (2003). Dispelling the myths - Biocatalysis in industrial synthesis. Science, 299, 1694–1697. https://doi.org/10.1126/science.1079237
Sheldon, R. A. (2007). Enzyme immobilization: The quest for optimum performance. Advanced Synthesis and Catalysis, 349(8–9), 1289–1307. https://doi.org/10.1002/adsc.200700082
Sheldon, R. A. & van Pelt, S. (2013). Enzyme immobilisation in biocatalysis: Why, what and how. Chemical Society Reviews, 42(15), 6223–6235. https://doi.org/10.1039/c3cs60075k
Sheldon, R. A. & Woodley, J. M. (2018). Role of Biocatalysis in Sustainable Chemistry. Chemical Reviews, 118(2), 801–838. https://doi.org/10.1021/acs.chemrev.7b00203
Singh, V. & Chakarvarti, S. K. (2016). Biotemplates and their uses in nanomaterials synthesis: A review. American Journal of Bioengineering and Biotechnology, 2, 1–14. https://doi.org/10.7726/ajbebt.2016.1001
Thommes, M., Kaneko, K., Neimark, A. V., Olivier, J. P., Rodriguez-Reinoso, F., Rouquerol, J. & Sing, K. S. W. (2015). Physisorption of gases, with special reference to the evaluation of surface area and pore size distribution (IUPAC Technical Report). Pure and Applied Chemistry, 87(9–10), 1051–1069. https://doi.org/10.1515/pac-2014-1117
Vaschetto, E. G., Ochoa Rodríguez, P. A., Pérez Pariente, J. & Eimer, G. A. (2023). Engineering more sustainable catalysts based in ecological and economic synthesis routes from renewable raw material: Novel mesoporous silicas for remediation technologies. Microporous and Mesoporous Materials., 360, 112719. https://doi.org/10.1016/j.micromeso.2023.112719
Vaschetto, E. G., Pecchi, G. A., Casuscelli, S. G. & Eimer, G. A. (2014). Nature of the active sites in Al-MCM-41 nano-structured catalysts for the selective rearrangement of cyclohexanone oxime toward ε-caprolactam. Microporous and Mesoporous Materials, 200, 110–116. https://doi.org/10.1016/j.micromeso.2014.08.030
Vilas Bôas, R. N. & de Castro, H. F. (2022). A review of synthesis of esters with aromatic, emulsifying, and lubricant properties by biotransformation using lipases. Biotechnology and Bioengineering, 119(3), 725–742. https://doi.org/10.1002/bit.28024
Yasutaka, K., Takato, Y., Takashi, K., Kohsuke, M. & Hiromi, Y. (2011). Enhancement in adsorption and catalytic activity of enzymes immobilized on phosphorus- and calcium-modified MCM-41. Journal of Physical Chemistry B, 115(34), 10335–10345. https://doi.org/10.1021/jp203632g