Desenvolvimento e avaliação de conjuntos eletrodo-membrana-eletrodo para células a combustível de alta eficiência.

Conteúdo do artigo principal

German Cespedes
Mariano Asteazaran
Emir Saab
Ana Castro Luna

Resumo

As células a combustível permitem a conversão eletroquímica da energia contida em certos compostos como o hidrogênio ou álcoois ricos em hidrogênio em energia elétrica de forma eficiente e não poluente. O núcleo da célula a combustível é constituído por cinco capas, que estão estreitamente interligadas; estas são a membrana condutora de prótons, as camadas difusoras de gás e as camadas catalíticas, tanto anódicas quanto catódicas. Neste trabalho são desenvolvidas e avaliadas as partes constituintes da montagem, colocando-as à prova em uma célula de combustível unitária para avaliar sua eficiência no laboratório.

Detalhes do artigo

Como Citar
Cespedes, G., Asteazaran, M., Saab, E., & Castro Luna, A. (2021). Desenvolvimento e avaliação de conjuntos eletrodo-membrana-eletrodo para células a combustível de alta eficiência. Ingenio Tecnológico, 3, e025. Recuperado de https://ingenio.frlp.utn.edu.ar/index.php/ingenio/article/view/51
Edição
Seção
Artículos

Referências

Asteazaran M., Bengió S., Triaca W. E., Castro Luna A. M. (2014). Methanol tolerant electrocatalysts for the oxygen reduction reaction. Journal of Applied Electrochemistry, 44(12), 1271-1278. https://doi.org/10.1007/s10800-014-0748-1

Asteazaran M., Cespedes G., Bengió S., Moreno M. S., Triaca W. E., & Castro Luna, A. M. (2015). Research on methanol-tolerant catalysts for the oxygen reduction reaction. Journal of Applied Electrochemistry, 45(11), 1187-1193. https://doi.org/10.1007/s10800-015-0845-9

Avcioglu G. S., Ficicilar B., Eroglu I. (2018). Effective factors improving catalyst layers of PEM fuel cell. International Journal of Hydrogen Energy, 43(23) 10779–10797. https://doi.org/10.1016/j.ijhydene.2017.12.055

Breitkopf C., Swider-Lyons K. (2015). Handbook of Electrochemical Energy. Springer. https://doi.org/10.1201/b19061

Cespedes G., Asteazaran M., Castro Luna A.M. (2016). Effect of Water Content in the Gas Diffusion Layer of H2/O2 PEM Fuel Cell. Journal of Materials Science and Engineering A, 6(4), 213-221. https://doi.org/10.17265/2161-6213/2016.7-8.004

Dupuis A.-C. (2011). Proton exchange membranes for fuel cells operated at medium temperatures: Materials and experimental techniques. Progress in Materials Science, 56(3) 289–327. https://doi.org/10.1016/j.pmatsci.2010.11.001

Gao Y, Qu W, Zhu R. (2021). The impact of structural characteristics of the catalyst layer on fuel cell performance based on reconstruction method. Journal of Power Sources, 482. https://doi.org/10.1016/j.jpowsour.2020.228917

He Q., Suraweera N. S., Joy D. C., Keffer D. J. (2013). Structure of the Ionomer Film in Catalyst Layers of Proton Exchange Membrane Fuel Cells. The Journal of Physical Chemistry C, 117(48) 25305–25316. https://doi.org/10.1021/jp408653f

Hodnik N., Zorko M., Bele M., Hocevar S., Gaberšcek M. (2012). Identical Location Scanning Electron Microscopy: A Case Study of Electrochemical Degradation of PtNi Nanoparticles Using a New Nondestructive Method. The Journal of Physical Chemistry C, 116(40) 21326–21333. https://doi.org/10.1021/jp303831c

Jiao K, Xuan J, Du Q, Bao Z, Xie B, Wang B, Zhao Y, Fan L, Wang H, Hou Z, Huo S, Brandon NP, Yin Y, Guiver MD. (2021). Designing the next generation of proton-exchange membrane fuel cells. Nature, 595. https://doi.org/10.1038/s41586-021-03482-7

Joseph D., Büsselmann J., Harms C., Henkensmeier D., Larsen M. J., Dyck A., Jang J. H., Kim H.-J., Nam S. W. (2016). Porous Nafion membranas. Journal of Membrane Science, 520, 723–730. https://doi.org/10.1016/j.memsci.2016.08.025

Ke Y, Yuan W, Zhou F, Guo W, Li J, Zhuang Z, Su X, Lu B, Zhao Y, Tang Y, Chen Y, Song J. (2021). A critical review on surface-pattern engineering of nafion membrane for fuel cell applications. Renewable and Sustainable Energy Reviews, 145. https://doi.org/10.1016/j.rser.2021.110860

Lopez-Haro M., Guétaz L., Printemps T., Morin A., Escribano S., Jouneau P.-H., Bayle-Guillemaud P., Chandezon F., Gebel G. (2014). Three-dimensional analysis of Nafion layers in fuel cell electrodes. Nature Communications, 5(1) 5229. https://doi.org/10.1038/ncomms6229

Marinoiu A., Raceanu M., Carcadea E., Varlam M. (2018). Iodine-doped graphene – Catalyst layer in PEM fuel cells. Applied Surface Science, 456, 238–245. https://doi.org/10.1016/j.apsusc.2018.06.100

Napoli L., Franco J., Fasoli H., Sanguinetti A. (2014). Conductivity of Nafion 117 membrane used in polymer electrolyte fuel cells. International Journal of Hydrogen Energy, 39(16) 8656–8660. https://doi.org/10.1016/j.ijhydene.2013.12.066

Okonkwo PC, Belgacem IB, Emori W, Uzoma PC. (2021). Nafion degradation mechanisms in proton exchange membrane fuel cell (PEMFC) system: A review. International journal of hydrogen energy, 46. https://doi.org/10.1016/j.ijhydene.2021.06.032

Park JY, Lim IS, Choi EJ, Lee YH, Kim MS. (2021). Comparative study of reverse flow activation and conventional activation with polymer electrolyte membrane fuel cell. Renewable Energy, 167, 162-171. https://doi.org/10.1016/j.renene.2020.11.069

Passalacqua E., Lufrano F., Squadrito G., Patti A., Giorgi L. (2001). Nafion content in the catalyst layer of polymer electrolyte fuel cells: effects on structure and performance. Electrochimica Acta, 46(6) 799–805. https://doi.org/10.1016/ S0013-4686(00)00679-4

Prapainainar P., Du Z., Kongkachuichay P., Holmes S. M., Prapainainar C. (2017). Mordenite/Nafion and analcime/Nafion composite membranes prepared by spray method for improved direct methanol fuel cell performance. Applied Surface Science, 421, 24–41. https://doi.org/10.1016/j.apsusc.2017.02.004

Prapainainar P., Maliwan S., Sarakham K., Du Z., Prapainainar C., Holmes S. M., Kongkachuichay P. (2018). Homogeneous polymer/filler composite membrane by spraying method for enhanced direct methanol fuel cell performance. International Journal of Hydrogen Energy, 43(31), 14675-14690. https://doi.org/10.1016/j.ijhydene.2018.05.173

Tzelepis S, Kavadias KA, Marnellos GE, Xydis G. (2021). A review study on proton exchange membrane fuel cell electrochemical performance focusing on anode and cathode catalyst layer modelling at macroscopic level. Renewable and Sustainable Energy Reviews, 151. https://doi.org/10.1016/j.rser.2021.111543

Vielstich W., Lamm A., Gasteiger H. A., Yokokawa H. (2010). Handbook of Fuel Cells. Chichester, UK: John Wiley & Sons, Ltd. https://doi.org/10.1002/9780470974001

Wang D., Xin H. L., Yu Y., Wang H., Rus E., Muller D. a., Abruña H. D. (2010). Ptdecorated PdCo@Pd/C core-shell nanoparticles with enhanced stability and electrocatalytic activity for the oxygen reduction reaction. Journal of the American Chemical Society, 132(50) 17664–17666. https://doi.org/10.1021/ja107874u

Xue Q, Yang D, Wang J, Li B, Ming P, Zhang C. (2021). Enhanced mass transfer and proton conduction of cathode catalyst layer for proton exchange membrane fuel cell through filling polyhedral oligomeric silsesquioxane. Journal of Power Sources, 487. https://doi.org/10.1016/j.jpowsour.2020.229413

Xing D., He G., Hou Z., Ming P., Song S. (2013). Properties and morphology of Nafion/polytetrafluoroethylene composite membrane fabricated by a solution-spray process. International Journal of Hydrogen Energy, 38(20), 8400–8408. https://doi.org/10.1016/j.ijhydene.2013.04.084