Development and evaluation of electrode-membrane-electrode assemblies for high efficiency fuel cells.

Main Article Content

German Cespedes
Mariano Asteazaran
Emir Saab
Ana Castro Luna

Abstract

A fuel cell is a device to directly convert the chemical energy of a fuel like hydrogen or hydrogen-rich alcohols into electricity. This conversion is in an efficient and non-polluting way. The core of the fuel cell is composed by 5 layers, which are closely interrelated. These parts are the proton exchange membrane, the gas diffusion layers and catalyst layers from the anode and cathode. In this work, we present membrane-electrode assemblies and evaluate they performances in the laboratory in a self-made fuel cell hardware.

Article Details

How to Cite
Cespedes, G., Asteazaran, M., Saab, E., & Castro Luna, A. (2021). Development and evaluation of electrode-membrane-electrode assemblies for high efficiency fuel cells. Ingenio Tecnológico, 3, e025. Retrieved from https://ingenio.frlp.utn.edu.ar/index.php/ingenio/article/view/51
Section
Artículos

References

Asteazaran M., Bengió S., Triaca W. E., Castro Luna A. M. (2014). Methanol tolerant electrocatalysts for the oxygen reduction reaction. Journal of Applied Electrochemistry, 44(12), 1271-1278. https://doi.org/10.1007/s10800-014-0748-1

Asteazaran M., Cespedes G., Bengió S., Moreno M. S., Triaca W. E., & Castro Luna, A. M. (2015). Research on methanol-tolerant catalysts for the oxygen reduction reaction. Journal of Applied Electrochemistry, 45(11), 1187-1193. https://doi.org/10.1007/s10800-015-0845-9

Avcioglu G. S., Ficicilar B., Eroglu I. (2018). Effective factors improving catalyst layers of PEM fuel cell. International Journal of Hydrogen Energy, 43(23) 10779–10797. https://doi.org/10.1016/j.ijhydene.2017.12.055

Breitkopf C., Swider-Lyons K. (2015). Handbook of Electrochemical Energy. Springer. https://doi.org/10.1201/b19061

Cespedes G., Asteazaran M., Castro Luna A.M. (2016). Effect of Water Content in the Gas Diffusion Layer of H2/O2 PEM Fuel Cell. Journal of Materials Science and Engineering A, 6(4), 213-221. https://doi.org/10.17265/2161-6213/2016.7-8.004

Dupuis A.-C. (2011). Proton exchange membranes for fuel cells operated at medium temperatures: Materials and experimental techniques. Progress in Materials Science, 56(3) 289–327. https://doi.org/10.1016/j.pmatsci.2010.11.001

Gao Y, Qu W, Zhu R. (2021). The impact of structural characteristics of the catalyst layer on fuel cell performance based on reconstruction method. Journal of Power Sources, 482. https://doi.org/10.1016/j.jpowsour.2020.228917

He Q., Suraweera N. S., Joy D. C., Keffer D. J. (2013). Structure of the Ionomer Film in Catalyst Layers of Proton Exchange Membrane Fuel Cells. The Journal of Physical Chemistry C, 117(48) 25305–25316. https://doi.org/10.1021/jp408653f

Hodnik N., Zorko M., Bele M., Hocevar S., Gaberšcek M. (2012). Identical Location Scanning Electron Microscopy: A Case Study of Electrochemical Degradation of PtNi Nanoparticles Using a New Nondestructive Method. The Journal of Physical Chemistry C, 116(40) 21326–21333. https://doi.org/10.1021/jp303831c

Jiao K, Xuan J, Du Q, Bao Z, Xie B, Wang B, Zhao Y, Fan L, Wang H, Hou Z, Huo S, Brandon NP, Yin Y, Guiver MD. (2021). Designing the next generation of proton-exchange membrane fuel cells. Nature, 595. https://doi.org/10.1038/s41586-021-03482-7

Joseph D., Büsselmann J., Harms C., Henkensmeier D., Larsen M. J., Dyck A., Jang J. H., Kim H.-J., Nam S. W. (2016). Porous Nafion membranas. Journal of Membrane Science, 520, 723–730. https://doi.org/10.1016/j.memsci.2016.08.025

Ke Y, Yuan W, Zhou F, Guo W, Li J, Zhuang Z, Su X, Lu B, Zhao Y, Tang Y, Chen Y, Song J. (2021). A critical review on surface-pattern engineering of nafion membrane for fuel cell applications. Renewable and Sustainable Energy Reviews, 145. https://doi.org/10.1016/j.rser.2021.110860

Lopez-Haro M., Guétaz L., Printemps T., Morin A., Escribano S., Jouneau P.-H., Bayle-Guillemaud P., Chandezon F., Gebel G. (2014). Three-dimensional analysis of Nafion layers in fuel cell electrodes. Nature Communications, 5(1) 5229. https://doi.org/10.1038/ncomms6229

Marinoiu A., Raceanu M., Carcadea E., Varlam M. (2018). Iodine-doped graphene – Catalyst layer in PEM fuel cells. Applied Surface Science, 456, 238–245. https://doi.org/10.1016/j.apsusc.2018.06.100

Napoli L., Franco J., Fasoli H., Sanguinetti A. (2014). Conductivity of Nafion 117 membrane used in polymer electrolyte fuel cells. International Journal of Hydrogen Energy, 39(16) 8656–8660. https://doi.org/10.1016/j.ijhydene.2013.12.066

Okonkwo PC, Belgacem IB, Emori W, Uzoma PC. (2021). Nafion degradation mechanisms in proton exchange membrane fuel cell (PEMFC) system: A review. International journal of hydrogen energy, 46. https://doi.org/10.1016/j.ijhydene.2021.06.032

Park JY, Lim IS, Choi EJ, Lee YH, Kim MS. (2021). Comparative study of reverse flow activation and conventional activation with polymer electrolyte membrane fuel cell. Renewable Energy, 167, 162-171. https://doi.org/10.1016/j.renene.2020.11.069

Passalacqua E., Lufrano F., Squadrito G., Patti A., Giorgi L. (2001). Nafion content in the catalyst layer of polymer electrolyte fuel cells: effects on structure and performance. Electrochimica Acta, 46(6) 799–805. https://doi.org/10.1016/ S0013-4686(00)00679-4

Prapainainar P., Du Z., Kongkachuichay P., Holmes S. M., Prapainainar C. (2017). Mordenite/Nafion and analcime/Nafion composite membranes prepared by spray method for improved direct methanol fuel cell performance. Applied Surface Science, 421, 24–41. https://doi.org/10.1016/j.apsusc.2017.02.004

Prapainainar P., Maliwan S., Sarakham K., Du Z., Prapainainar C., Holmes S. M., Kongkachuichay P. (2018). Homogeneous polymer/filler composite membrane by spraying method for enhanced direct methanol fuel cell performance. International Journal of Hydrogen Energy, 43(31), 14675-14690. https://doi.org/10.1016/j.ijhydene.2018.05.173

Tzelepis S, Kavadias KA, Marnellos GE, Xydis G. (2021). A review study on proton exchange membrane fuel cell electrochemical performance focusing on anode and cathode catalyst layer modelling at macroscopic level. Renewable and Sustainable Energy Reviews, 151. https://doi.org/10.1016/j.rser.2021.111543

Vielstich W., Lamm A., Gasteiger H. A., Yokokawa H. (2010). Handbook of Fuel Cells. Chichester, UK: John Wiley & Sons, Ltd. https://doi.org/10.1002/9780470974001

Wang D., Xin H. L., Yu Y., Wang H., Rus E., Muller D. a., Abruña H. D. (2010). Ptdecorated PdCo@Pd/C core-shell nanoparticles with enhanced stability and electrocatalytic activity for the oxygen reduction reaction. Journal of the American Chemical Society, 132(50) 17664–17666. https://doi.org/10.1021/ja107874u

Xue Q, Yang D, Wang J, Li B, Ming P, Zhang C. (2021). Enhanced mass transfer and proton conduction of cathode catalyst layer for proton exchange membrane fuel cell through filling polyhedral oligomeric silsesquioxane. Journal of Power Sources, 487. https://doi.org/10.1016/j.jpowsour.2020.229413

Xing D., He G., Hou Z., Ming P., Song S. (2013). Properties and morphology of Nafion/polytetrafluoroethylene composite membrane fabricated by a solution-spray process. International Journal of Hydrogen Energy, 38(20), 8400–8408. https://doi.org/10.1016/j.ijhydene.2013.04.084