Desarrollo y evaluación de ensambles electrodo-membrana-electrodo para celdas de combustible de alta eficiencia.
Contenido principal del artículo
Resumen
Las celdas de combustible permiten la conversión electroquímica de la energía contenida en ciertos compuestos como ser hidrógeno o alcoholes ricos en hidrógeno, en energía eléctrica en forma eficiente y no contaminante. El núcleo de la celda de combustible está constituido por cinco capas, las cuales se encuentran estrechamente interrelacionadas; éstas son la membrana conductora de protones, las capas difusoras de gases y las capas catalíticas tanto anódicas como catódicas. En este trabajo se desarrollan y se evalúan las partes constitutivas del ensamble, poniéndolas a prueba en una celda de combustible unitaria para evaluar su eficiencia en el laboratorio.
Detalles del artículo
Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial-CompartirIgual 4.0.
Citas
Asteazaran M., Bengió S., Triaca W. E., Castro Luna A. M. (2014). Methanol tolerant electrocatalysts for the oxygen reduction reaction. Journal of Applied Electrochemistry, 44(12), 1271-1278. https://doi.org/10.1007/s10800-014-0748-1
Asteazaran M., Cespedes G., Bengió S., Moreno M. S., Triaca W. E., & Castro Luna, A. M. (2015). Research on methanol-tolerant catalysts for the oxygen reduction reaction. Journal of Applied Electrochemistry, 45(11), 1187-1193. https://doi.org/10.1007/s10800-015-0845-9
Avcioglu G. S., Ficicilar B., Eroglu I. (2018). Effective factors improving catalyst layers of PEM fuel cell. International Journal of Hydrogen Energy, 43(23) 10779–10797. https://doi.org/10.1016/j.ijhydene.2017.12.055
Breitkopf C., Swider-Lyons K. (2015). Handbook of Electrochemical Energy. Springer. https://doi.org/10.1201/b19061
Cespedes G., Asteazaran M., Castro Luna A.M. (2016). Effect of Water Content in the Gas Diffusion Layer of H2/O2 PEM Fuel Cell. Journal of Materials Science and Engineering A, 6(4), 213-221. https://doi.org/10.17265/2161-6213/2016.7-8.004
Dupuis A.-C. (2011). Proton exchange membranes for fuel cells operated at medium temperatures: Materials and experimental techniques. Progress in Materials Science, 56(3) 289–327. https://doi.org/10.1016/j.pmatsci.2010.11.001
Gao Y, Qu W, Zhu R. (2021). The impact of structural characteristics of the catalyst layer on fuel cell performance based on reconstruction method. Journal of Power Sources, 482. https://doi.org/10.1016/j.jpowsour.2020.228917
He Q., Suraweera N. S., Joy D. C., Keffer D. J. (2013). Structure of the Ionomer Film in Catalyst Layers of Proton Exchange Membrane Fuel Cells. The Journal of Physical Chemistry C, 117(48) 25305–25316. https://doi.org/10.1021/jp408653f
Hodnik N., Zorko M., Bele M., Hocevar S., Gaberšcek M. (2012). Identical Location Scanning Electron Microscopy: A Case Study of Electrochemical Degradation of PtNi Nanoparticles Using a New Nondestructive Method. The Journal of Physical Chemistry C, 116(40) 21326–21333. https://doi.org/10.1021/jp303831c
Jiao K, Xuan J, Du Q, Bao Z, Xie B, Wang B, Zhao Y, Fan L, Wang H, Hou Z, Huo S, Brandon NP, Yin Y, Guiver MD. (2021). Designing the next generation of proton-exchange membrane fuel cells. Nature, 595. https://doi.org/10.1038/s41586-021-03482-7
Joseph D., Büsselmann J., Harms C., Henkensmeier D., Larsen M. J., Dyck A., Jang J. H., Kim H.-J., Nam S. W. (2016). Porous Nafion membranas. Journal of Membrane Science, 520, 723–730. https://doi.org/10.1016/j.memsci.2016.08.025
Ke Y, Yuan W, Zhou F, Guo W, Li J, Zhuang Z, Su X, Lu B, Zhao Y, Tang Y, Chen Y, Song J. (2021). A critical review on surface-pattern engineering of nafion membrane for fuel cell applications. Renewable and Sustainable Energy Reviews, 145. https://doi.org/10.1016/j.rser.2021.110860
Lopez-Haro M., Guétaz L., Printemps T., Morin A., Escribano S., Jouneau P.-H., Bayle-Guillemaud P., Chandezon F., Gebel G. (2014). Three-dimensional analysis of Nafion layers in fuel cell electrodes. Nature Communications, 5(1) 5229. https://doi.org/10.1038/ncomms6229
Marinoiu A., Raceanu M., Carcadea E., Varlam M. (2018). Iodine-doped graphene – Catalyst layer in PEM fuel cells. Applied Surface Science, 456, 238–245. https://doi.org/10.1016/j.apsusc.2018.06.100
Napoli L., Franco J., Fasoli H., Sanguinetti A. (2014). Conductivity of Nafion 117 membrane used in polymer electrolyte fuel cells. International Journal of Hydrogen Energy, 39(16) 8656–8660. https://doi.org/10.1016/j.ijhydene.2013.12.066
Okonkwo PC, Belgacem IB, Emori W, Uzoma PC. (2021). Nafion degradation mechanisms in proton exchange membrane fuel cell (PEMFC) system: A review. International journal of hydrogen energy, 46. https://doi.org/10.1016/j.ijhydene.2021.06.032
Park JY, Lim IS, Choi EJ, Lee YH, Kim MS. (2021). Comparative study of reverse flow activation and conventional activation with polymer electrolyte membrane fuel cell. Renewable Energy, 167, 162-171. https://doi.org/10.1016/j.renene.2020.11.069
Passalacqua E., Lufrano F., Squadrito G., Patti A., Giorgi L. (2001). Nafion content in the catalyst layer of polymer electrolyte fuel cells: effects on structure and performance. Electrochimica Acta, 46(6) 799–805. https://doi.org/10.1016/ S0013-4686(00)00679-4
Prapainainar P., Du Z., Kongkachuichay P., Holmes S. M., Prapainainar C. (2017). Mordenite/Nafion and analcime/Nafion composite membranes prepared by spray method for improved direct methanol fuel cell performance. Applied Surface Science, 421, 24–41. https://doi.org/10.1016/j.apsusc.2017.02.004
Prapainainar P., Maliwan S., Sarakham K., Du Z., Prapainainar C., Holmes S. M., Kongkachuichay P. (2018). Homogeneous polymer/filler composite membrane by spraying method for enhanced direct methanol fuel cell performance. International Journal of Hydrogen Energy, 43(31), 14675-14690. https://doi.org/10.1016/j.ijhydene.2018.05.173
Tzelepis S, Kavadias KA, Marnellos GE, Xydis G. (2021). A review study on proton exchange membrane fuel cell electrochemical performance focusing on anode and cathode catalyst layer modelling at macroscopic level. Renewable and Sustainable Energy Reviews, 151. https://doi.org/10.1016/j.rser.2021.111543
Vielstich W., Lamm A., Gasteiger H. A., Yokokawa H. (2010). Handbook of Fuel Cells. Chichester, UK: John Wiley & Sons, Ltd. https://doi.org/10.1002/9780470974001
Wang D., Xin H. L., Yu Y., Wang H., Rus E., Muller D. a., Abruña H. D. (2010). Ptdecorated PdCo@Pd/C core-shell nanoparticles with enhanced stability and electrocatalytic activity for the oxygen reduction reaction. Journal of the American Chemical Society, 132(50) 17664–17666. https://doi.org/10.1021/ja107874u
Xue Q, Yang D, Wang J, Li B, Ming P, Zhang C. (2021). Enhanced mass transfer and proton conduction of cathode catalyst layer for proton exchange membrane fuel cell through filling polyhedral oligomeric silsesquioxane. Journal of Power Sources, 487. https://doi.org/10.1016/j.jpowsour.2020.229413
Xing D., He G., Hou Z., Ming P., Song S. (2013). Properties and morphology of Nafion/polytetrafluoroethylene composite membrane fabricated by a solution-spray process. International Journal of Hydrogen Energy, 38(20), 8400–8408. https://doi.org/10.1016/j.ijhydene.2013.04.084