Diseño, síntesis y caracterización de novedosos catalizadores heterogéneos sólidos a partir de materiales renovables.

Contenido principal del artículo

Marina B. Palacios
Paola M. Carraro
Eliana G. Vaschetto
Griselda A. Eimer

Resumen

Se sintetizaron exitosamente sólidos silíceos mesoporosos a través de metodologías innovadoras y sostenibles empleando precursores renovables y rutas de síntesis más amigables para el medio ambiente (método sol-gel). Los materiales de partida se obtuvieron mediante síntesis hidrotérmica, utilizando una fuente de silicio extraída de la cáscara de arroz y monoestearato de glicerilo como agente porógeno. Estos materiales nanoestructurados se prepararon con diferentes contenidos de Al mediante síntesis por incorporación directa (Si/Al= 10, 30, 60 y 100) y se caracterizaron por adsorción de N2, SEM-EDS, TEM, RMN, IR-TF y adsorción de piridina acoplada a espectroscopia IR-TF. Así, la mayor incorporación de aluminio en la estructura del material se logró a partir de una relación molar inicial de Si/Al= 10, tratamiento hidrotérmico de tres días y una hora de calcinación a 550 °C. Esta característica condujo a una elevada acidez en los sólidos diseñados, la cual los convierte en atractivos catalizadores para ser aplicados en reacciones industriales de interés impulsadas por sitios ácidos. 

Detalles del artículo

Cómo citar
Palacios, M. B. ., Carraro, P. M., Vaschetto, . E. G. ., & Eimer, G. A. (2025). Diseño, síntesis y caracterización de novedosos catalizadores heterogéneos sólidos a partir de materiales renovables. Ingenio Tecnológico, 7, e055. Recuperado a partir de https://ingenio.frlp.utn.edu.ar/index.php/ingenio/article/view/135
Sección
Artículos

Citas

Adam, F., Appaturi, J. N., & Iqbal, A. (2012). The utilization of rice husk silica as a catalyst: Review and recent progress. Catalysis Today, 190(1), 2–14. https://doi.org/10.1016/j.cattod.2012.04.056

Ahmed, A. E., & Adam, F. (2007). Indium incorporated silica from rice husk and its catalytic activity. Microporous and Mesoporous Materials, 103(1–3), 284–295. https://doi.org/10.1016/j.micromeso.2007.01.055

Akinjokun, A. I., Ojumu, T. V., & Ogunfowokan, A. O. (2016). Biomass, Abundant Resources for Synthesis of Mesoporous Silica Material. Microporous and Mesoporous Materials. https://doi.org/10.5772/63463

Barr, T. L. (1990). The nature of the relative bonding chemistry in zeolites: An XPS study. Zeolites, 10(8), 760–765. https://doi.org/10.1016/0144-2449(90)90058-Y

Bedoya, J. C., Valdez, R., Cota, L., Alvarez-Amparán, M. A., & Olivas, A. (2022). Performance of Al-MCM-41 nanospheres as catalysts for dimethyl ether production. Catalysis Today, 388–389(February), 55–62. https://doi.org/10.1016/j.cattod.2021.01.010

Betiha, M. A., Mahmoud, S. A., Menoufy, M. F., & Al-sabagh, A. M. (2011). Applied Catalysis B : Environmental One-pot template synthesis of Ti – Al-containing mesoporous silicas and their application as potential photocatalytic degradation of chlorophenols. “Applied Catalysis B, Environmental,” 107(3–4), 316–326. https://doi.org/10.1016/j.apcatb.2011.07.030

Brun, N., Hesemann, P., & Esposito, D. (2017). Expanding the biomass derived chemical space. Chemical Science, 8(7), 4724–4738. https://doi.org/10.1039/c7sc00936d

Cai, W., Ni, X., Meng, F., Sun, L., Wang, R., & Lin, S. (2022). From Al-SBA-15 to Ga-SBA-15: Morphology and acidity evolution in the acid-free synthesis. Microporous and Mesoporous Materials, 335, 111823. https://doi.org/10.1016/J.MICROMESO.2022.111823

Canlas, C. P., & Pinnavaia, T. J. (2012). RSC Advances Bio-derived oleyl surfactants as porogens for the sustainable synthesis of micelle-templated mesoporous silica {. 7449–7455. https://doi.org/10.1039/c2ra21023a

Carraro, P. M., Benzaquén, T. B., & Eimer, G. A. (2021). Eco-friendly synthesis of nanostructured mesoporous materials from natural source rice husk silica for environmental applications. Environmental Science and Pollution Research, 28(19), 23707–23719. https://doi.org/10.1007/s11356-020-11043-0

Carraro, P. M., Eimer, G. A., & Oliva, M. I. (2015). Influence of the Synthesis Time in the Textural and Structural Properties of Ni-Containing Mesoporous Materials. Procedia Materials Science, 8, 561–566. https://doi.org/10.1016/j.mspro.2015.04.109

Carraro, P. M., García Blanco, A. A., Chanquía, C., Sapag, K., Oliva, M. I., & Eimer, G. A. (2017). Hydrogen adsorption of nickel-silica materials: Role of the SBA-15 porosity. Microporous and Mesoporous Materials, 248, 62–71. https://doi.org/10.1016/J.MICROMESO.2017.03.057

Cedeño, L., Hernandez, D., Klimova, T., & Ramirez, J. (2003). Synthesis of Nb-containing mesoporous silica molecular sieves: Analysis of its potential use in HDS catalysts. Applied Catalysis A: General, 241(1–2), 39–50. https://doi.org/10.1016/S0926-860X(02)00429-5

Collard, X., Li, L., Lueangchaichaweng, W., Bertrand, A., Aprile, C., & Pescarmona, P. P. (2014). Ga-MCM-41 nanoparticles: Synthesis and application of versatile heterogeneous catalysts. Catalysis Today, 235, 184–192. https://doi.org/10.1016/J.CATTOD.2014.02.055

Ding, T. P., Ma, G. R., Shui, M. X., Wan, D. F., & Li, R. H. (2005). Silicon isotope study on rice plants from the Zhejiang province, China. Chemical Geology, 218(1-2 SPEC. ISS.), 41–50. https://doi.org/10.1016/j.chemgeo.2005.01.018

Eimer, G. A., Pierella, L. B., Monti, G. A., & Anunziata, O. A. (2002). Synthesis and characterization of Al-MCM-41 and Al-MCM-48 mesoporous materials. Catalysis Letters, 78(1–4), 65–75. https://doi.org/10.1023/A:1014924332500

Eimer, G. A., Pierella, L. B., Monti, G. A., & Anunziata, O. A. (2003). Preparation and characterization of aluminium – containing MCM-41. 4, 118–123. https://doi.org/10.1016/S1566-7367(03)00008-6

Elías, V., Sabre, E., Sapag, K., Casuscelli, S., & Eimer, G. (2012). Influence of the Cr loading in Cr/MCM-41 and TiO 2/Cr/MCM-41 molecular sieves for the photodegradation of Acid Orange 7. Applied Catalysis A: General, 413–414, 280–291. https://doi.org/10.1016/j.apcata.2011.11.019

Gijzeman, O. L. J., Mens, A. J. M., Van Lenthe, J. H., Mortier, W. J., & Weckhuysen, B. M. (2004). The effect of chemical composition and structure on XPS binding energies in zeolites. Studies in Surface Science and Catalysis, 154 B, 1385–1392. https://doi.org/10.1016/s0167-2991(04)80654-2

Grosman, A., & Ortega, C. (2008). Capillary Condensation in Porous Materials . Hysteresis and Interaction Mechanism without Pore Blocking / Percolation Process. Figure 2, 3977–3986.

Imoisili, E. A. O. P. E., & Olusunle, S. O. O. (2013). Extraction and characterization of Amorphous Silica from Corn Cob Ash by Sol-Gel Method. 3(4), 68–73.

Kumagai, S., Ishizawa, H., Aoki, Y., & Toida, Y. (2010). Molded micro- and mesoporous carbon/silica composite from rice husk and beet sugar. Chemical Engineering Journal, 156(2), 270–277. https://doi.org/10.1016/j.cej.2009.10.016

Lee, D., Jin, M., Park, J. C., Lee, C., Oh, D., Lee, S., Park, J., & Park, J. (2015). Waste-Glycerol-Directed Synthesis of Mesoporous Silica and Carbon with Superior Performance in Room-Temperature Hydrogen Production from Formic Acid. Nature Publishing Group, October, 1–11. https://doi.org/10.1038/srep15931

Lin, K., Pescarmona, P. P., Vandepitte, H., Liang, D., Van Tendeloo, G., & Jacobs, P. A. (2008). Synthesis and catalytic activity of Ti-MCM-41 nanoparticles with highly active titanium sites. Journal of Catalysis, 254(1), 64–70. https://doi.org/10.1016/J.JCAT.2007.11.017

Luan, Z., Cheng, C., Zhou, W., & Klinowski, J. (1995). Mesopore Molecular Sieve MCM-41 Containing Framework Aluminum. 1018–1024.

Martín-Aranda, R. M., & Čejka, J. (2010). Recent advances in catalysis over mesoporous molecular sieves. Topics in Catalysis, 53(3–4), 141–153. https://doi.org/10.1007/s11244-009-9419-6

Molina-Conde, L. H., Suárez-Méndez, A., Pérez-Estrada, D. E., & Klimova, T. E. (2023). Mesoporous Ni/Al-MCM-41 catalysts for highly active and selective hydrodeoxygenation of anisole to cyclohexane. Applied Catalysis A: General, 663(May). https://doi.org/10.1016/j.apcata.2023.119313

Panpa, W., & Jinawath, S. (2009). Synthesis of ZSM-5 zeolite and silicalite from rice husk ash. Applied Catalysis B: Environmental, 90(3–4), 389–394. https://doi.org/10.1016/j.apcatb.2009.03.029

Parry, E. P. (1963). An infrared study of pyridine adsorbed on acidic solids. Characterization of surface acidity. Journal of Catalysis, 2(5), 371–379. https://doi.org/10.1016/0021-9517(63)90102-7

Peña, J. D., Cardona, E. M., Marín, J. M., & Rios, L. A. (2009). Producción de sílice mesoporosa empleando monoestearato de glicerol como porógeno oleoquímico. Informacion Tecnologica, 20(6), 67–74. https://doi.org/10.1612/inf.tecnol.4109cit.08

Peña, J., Procesos, G., & Aplicados, F. (2008). Synthesis of Silicon Oxide With High Superficial Area and Porosity Through Sol-Gel Technique Using Glycerol and Glyceryl Monostearate As Templates Eliana Cardona Luis Rios. Año, 75, 207–216.

Pieła, A., Żymańczyk-duda, E., Brzezińska-rodak, M., & Duda, M. (2020). Bioorganic Chemistry Biogenic synthesis of silica nanoparticles from corn cobs husks . Dependence of the productivity on the method of raw material processing. Bioorganic Chemistry, 99(October 2019), 103773. https://doi.org/10.1016/j.bioorg.2020.103773

Rasmussen, C. J., Vishnyakov, A., Thommes, M., Smarsly, B. M., Kleitz, F., & Neimark, A. V. (2010). Cavitation in Metastable Liquid Nitrogen Confined to Nanoscale Pores. 26(12), 10147–10157. https://doi.org/10.1021/la100268q

Rodrigues, S., Uma, S., Martyanov, I. N., & Klabunde, K. J. (2004). Visible light induced photocatalytic activity for degradation of acetaldehyde using transition metal incorporated Al-MCM-41 ( aluminum doped silica zeolitic material ). 165, 51–58. https://doi.org/10.1016/j.jphotochem.2003.11.010

Sohrabnezhad, S., Jafarzadeh, A., & Pourahmad, A. (2018). Synthesis and characterization of MCM-41 ropes. Materials Letters, 212, 16–19. https://doi.org/10.1016/j.matlet.2017.10.059

Thommes, M., Kaneko, K., Neimark, A. V., Olivier, J. P., Rodriguez-Reinoso, F., Rouquerol, J., & Sing, K. S. W. (2015). Physisorption of gases, with special reference to the evaluation of surface area and pore size distribution (IUPAC Technical Report). Pure and Applied Chemistry, 87(9–10), 1051–1069. https://doi.org/10.1515/PAC-2014-1117/MACHINEREADABLECITATION/RIS

Vaschetto, Ochoa Rodríguez, Pérez Pariente, E. (2023). Engineering more sustainable catalysts based in ecological and economic synthesis routes from renewable raw material: Novel mesoporous silicas for remediation technologies. Microporous and Mesoporous Materials, 360, 112719. https://doi.org/10.1016/J.MICROMESO.2023.112719

Vaschetto, E. G., Casuscelli, S. G., & Eimer, G. A. (2018). Acidity versus catalytic activity in bi-structured nanomaterials. Microporous and Mesoporous Materials, 268(November 2017), 170–177. https://doi.org/10.1016/j.micromeso.2018.04.028

Vaschetto, E. G., Casuscelli, S. G., Ferrero, G. O., & Eimer, G. A. (2023). Design of catalysts with controlled porosity and variable acidity for the synthesis of industrialized products. Chemical Physics Letters, 825(May), 140611. https://doi.org/10.1016/j.cplett.2023.140611

Vaschetto, E. G., Monti, G. A., Herrero, E. R., Casuscelli, S. G., & Eimer, G. A. (2013). Influence of the synthesis conditions on the physicochemical properties and acidity of Al-MCM-41 as catalysts for the cyclohexanone oxime rearrangement. Applied Catalysis A: General, 453, 391–402. https://doi.org/10.1016/j.apcata.2012.12.016

Vaschetto, E., Monti, G. A., Herrero, E. R., Casuscelli, S. G., & Eimer, G. A. (2013). Applied Catalysis A : General Influence of the synthesis conditions on the physicochemical properties and acidity of Al-MCM-41 as catalysts for the cyclohexanone oxime rearrangement. “Applied Catalysis A, General,” 453, 391–402. https://doi.org/10.1016/j.apcata.2012.12.016

Vaschetto, E., Pecchi, G. A., Casuscelli, S. G., & Eimer, G. A. (2014). Nature of the active sites in Al-MCM-41 nano-structured catalysts for the selective rearrangement of cyclohexanone oxime toward ε-caprolactam. Microporous and Mesoporous Materials, 200, 110–116. https://doi.org/10.1016/j.micromeso.2014.08.030

Villarroel-rocha, J., Barrera, D., & Sapag, K. (2014). Microporous and Mesoporous Materials Introducing a self-consistent test and the corresponding modification in the Barrett , Joyner and Halenda method for pore-size determination. MICROPOROUS AND MESOPOROUS MATERIALS, 200, 68–78. https://doi.org/10.1016/j.micromeso.2014.08.017

Weglarski, J., Datka, J., He, H., & Klinowski, J. (1996). IR spectroscopic studies of the acidic properties of the mesoporous molecular sieve MCM-41. Journal of the Chemical Society - Faraday Transactions, 92(24), 5161–5164. https://doi.org/10.1039/ft9969205161

Xiang Wei-Dong,z Yang Yu-Xiang,w,z,y Chen Jing,y Wang Zhaolun, z and L. X.-N. (2008). Preparation of Mesoporous Silica Using Amphoteric Surfactant Potassium and Sodium N-Dodecyl Glycine Template. The American Ceramic Society Preparation, 1521(23527), 1517–1521. https://doi.org/10.1111/j.1551-2916.2008.02356.x

Yeletsky, P. M., Yakovlev, V. A., Mel’gunov, M. S., & Parmon, V. N. (2009). Synthesis of mesoporous carbons by leaching out natural silica templates of rice husk. Microporous and Mesoporous Materials, 121(1–3), 34–40. https://doi.org/10.1016/j.micromeso.2008.12.025

Zhang, H., Dong, Y., Fang, W., & Lian, Y. (2013). Effects of composite oxide supports on catalytic performance of Ni-based catalysts for CO methanation. Chinese Journal of Catalysis, 34(2), 330. https://doi.org/10.1016/S1872-2067(11)60485-3