Diseño, síntesis y caracterización de novedosos catalizadores heterogéneos sólidos a partir de materiales renovables.
Main Article Content
Abstract
Mesoporous siliceous solids have been successfully synthesized from innovative and sustainable methodologies, employing renewable precursors and more environmentally friendly synthesis routes (sol-gel method). The starting materials were obtained by hydrothermal synthesis, using a silicon source extracted from rice husk and glyceryl monostearate as a porogen. These nanostructured materials were prepared with different Al contents by direct incorporation synthesis (Si/Al= 10, 30, 60 and 100) and were characterized by N2 adsorption, SEM-EDS, TEM, NMR, IR-TF and pyridine adsorption coupled to IR-FT spectroscopy. Thus, the highest incorporation of aluminum in the material structure was achieved from an initial molar ratio of Si/Al= 10, hydrothermal treatment for three days and one hour of calcination at 550 °C. This feature led to a high acidity in the designed solids, which makes them attractive catalysts to be applied in industrial reactions of interest driven by acid sites.
Article Details

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
References
Adam, F., Appaturi, J. N., & Iqbal, A. (2012). The utilization of rice husk silica as a catalyst: Review and recent progress. Catalysis Today, 190(1), 2–14. https://doi.org/10.1016/j.cattod.2012.04.056
Ahmed, A. E., & Adam, F. (2007). Indium incorporated silica from rice husk and its catalytic activity. Microporous and Mesoporous Materials, 103(1–3), 284–295. https://doi.org/10.1016/j.micromeso.2007.01.055
Akinjokun, A. I., Ojumu, T. V., & Ogunfowokan, A. O. (2016). Biomass, Abundant Resources for Synthesis of Mesoporous Silica Material. Microporous and Mesoporous Materials. https://doi.org/10.5772/63463
Barr, T. L. (1990). The nature of the relative bonding chemistry in zeolites: An XPS study. Zeolites, 10(8), 760–765. https://doi.org/10.1016/0144-2449(90)90058-Y
Bedoya, J. C., Valdez, R., Cota, L., Alvarez-Amparán, M. A., & Olivas, A. (2022). Performance of Al-MCM-41 nanospheres as catalysts for dimethyl ether production. Catalysis Today, 388–389(February), 55–62. https://doi.org/10.1016/j.cattod.2021.01.010
Betiha, M. A., Mahmoud, S. A., Menoufy, M. F., & Al-sabagh, A. M. (2011). Applied Catalysis B : Environmental One-pot template synthesis of Ti – Al-containing mesoporous silicas and their application as potential photocatalytic degradation of chlorophenols. “Applied Catalysis B, Environmental,” 107(3–4), 316–326. https://doi.org/10.1016/j.apcatb.2011.07.030
Brun, N., Hesemann, P., & Esposito, D. (2017). Expanding the biomass derived chemical space. Chemical Science, 8(7), 4724–4738. https://doi.org/10.1039/c7sc00936d
Cai, W., Ni, X., Meng, F., Sun, L., Wang, R., & Lin, S. (2022). From Al-SBA-15 to Ga-SBA-15: Morphology and acidity evolution in the acid-free synthesis. Microporous and Mesoporous Materials, 335, 111823. https://doi.org/10.1016/J.MICROMESO.2022.111823
Canlas, C. P., & Pinnavaia, T. J. (2012). RSC Advances Bio-derived oleyl surfactants as porogens for the sustainable synthesis of micelle-templated mesoporous silica {. 7449–7455. https://doi.org/10.1039/c2ra21023a
Carraro, P. M., Benzaquén, T. B., & Eimer, G. A. (2021). Eco-friendly synthesis of nanostructured mesoporous materials from natural source rice husk silica for environmental applications. Environmental Science and Pollution Research, 28(19), 23707–23719. https://doi.org/10.1007/s11356-020-11043-0
Carraro, P. M., Eimer, G. A., & Oliva, M. I. (2015). Influence of the Synthesis Time in the Textural and Structural Properties of Ni-Containing Mesoporous Materials. Procedia Materials Science, 8, 561–566. https://doi.org/10.1016/j.mspro.2015.04.109
Carraro, P. M., García Blanco, A. A., Chanquía, C., Sapag, K., Oliva, M. I., & Eimer, G. A. (2017). Hydrogen adsorption of nickel-silica materials: Role of the SBA-15 porosity. Microporous and Mesoporous Materials, 248, 62–71. https://doi.org/10.1016/J.MICROMESO.2017.03.057
Cedeño, L., Hernandez, D., Klimova, T., & Ramirez, J. (2003). Synthesis of Nb-containing mesoporous silica molecular sieves: Analysis of its potential use in HDS catalysts. Applied Catalysis A: General, 241(1–2), 39–50. https://doi.org/10.1016/S0926-860X(02)00429-5
Collard, X., Li, L., Lueangchaichaweng, W., Bertrand, A., Aprile, C., & Pescarmona, P. P. (2014). Ga-MCM-41 nanoparticles: Synthesis and application of versatile heterogeneous catalysts. Catalysis Today, 235, 184–192. https://doi.org/10.1016/J.CATTOD.2014.02.055
Ding, T. P., Ma, G. R., Shui, M. X., Wan, D. F., & Li, R. H. (2005). Silicon isotope study on rice plants from the Zhejiang province, China. Chemical Geology, 218(1-2 SPEC. ISS.), 41–50. https://doi.org/10.1016/j.chemgeo.2005.01.018
Eimer, G. A., Pierella, L. B., Monti, G. A., & Anunziata, O. A. (2002). Synthesis and characterization of Al-MCM-41 and Al-MCM-48 mesoporous materials. Catalysis Letters, 78(1–4), 65–75. https://doi.org/10.1023/A:1014924332500
Eimer, G. A., Pierella, L. B., Monti, G. A., & Anunziata, O. A. (2003). Preparation and characterization of aluminium – containing MCM-41. 4, 118–123. https://doi.org/10.1016/S1566-7367(03)00008-6
Elías, V., Sabre, E., Sapag, K., Casuscelli, S., & Eimer, G. (2012). Influence of the Cr loading in Cr/MCM-41 and TiO 2/Cr/MCM-41 molecular sieves for the photodegradation of Acid Orange 7. Applied Catalysis A: General, 413–414, 280–291. https://doi.org/10.1016/j.apcata.2011.11.019
Gijzeman, O. L. J., Mens, A. J. M., Van Lenthe, J. H., Mortier, W. J., & Weckhuysen, B. M. (2004). The effect of chemical composition and structure on XPS binding energies in zeolites. Studies in Surface Science and Catalysis, 154 B, 1385–1392. https://doi.org/10.1016/s0167-2991(04)80654-2
Grosman, A., & Ortega, C. (2008). Capillary Condensation in Porous Materials . Hysteresis and Interaction Mechanism without Pore Blocking / Percolation Process. Figure 2, 3977–3986.
Imoisili, E. A. O. P. E., & Olusunle, S. O. O. (2013). Extraction and characterization of Amorphous Silica from Corn Cob Ash by Sol-Gel Method. 3(4), 68–73.
Kumagai, S., Ishizawa, H., Aoki, Y., & Toida, Y. (2010). Molded micro- and mesoporous carbon/silica composite from rice husk and beet sugar. Chemical Engineering Journal, 156(2), 270–277. https://doi.org/10.1016/j.cej.2009.10.016
Lee, D., Jin, M., Park, J. C., Lee, C., Oh, D., Lee, S., Park, J., & Park, J. (2015). Waste-Glycerol-Directed Synthesis of Mesoporous Silica and Carbon with Superior Performance in Room-Temperature Hydrogen Production from Formic Acid. Nature Publishing Group, October, 1–11. https://doi.org/10.1038/srep15931
Lin, K., Pescarmona, P. P., Vandepitte, H., Liang, D., Van Tendeloo, G., & Jacobs, P. A. (2008). Synthesis and catalytic activity of Ti-MCM-41 nanoparticles with highly active titanium sites. Journal of Catalysis, 254(1), 64–70. https://doi.org/10.1016/J.JCAT.2007.11.017
Luan, Z., Cheng, C., Zhou, W., & Klinowski, J. (1995). Mesopore Molecular Sieve MCM-41 Containing Framework Aluminum. 1018–1024.
Martín-Aranda, R. M., & Čejka, J. (2010). Recent advances in catalysis over mesoporous molecular sieves. Topics in Catalysis, 53(3–4), 141–153. https://doi.org/10.1007/s11244-009-9419-6
Molina-Conde, L. H., Suárez-Méndez, A., Pérez-Estrada, D. E., & Klimova, T. E. (2023). Mesoporous Ni/Al-MCM-41 catalysts for highly active and selective hydrodeoxygenation of anisole to cyclohexane. Applied Catalysis A: General, 663(May). https://doi.org/10.1016/j.apcata.2023.119313
Panpa, W., & Jinawath, S. (2009). Synthesis of ZSM-5 zeolite and silicalite from rice husk ash. Applied Catalysis B: Environmental, 90(3–4), 389–394. https://doi.org/10.1016/j.apcatb.2009.03.029
Parry, E. P. (1963). An infrared study of pyridine adsorbed on acidic solids. Characterization of surface acidity. Journal of Catalysis, 2(5), 371–379. https://doi.org/10.1016/0021-9517(63)90102-7
Peña, J. D., Cardona, E. M., Marín, J. M., & Rios, L. A. (2009). Producción de sílice mesoporosa empleando monoestearato de glicerol como porógeno oleoquímico. Informacion Tecnologica, 20(6), 67–74. https://doi.org/10.1612/inf.tecnol.4109cit.08
Peña, J., Procesos, G., & Aplicados, F. (2008). Synthesis of Silicon Oxide With High Superficial Area and Porosity Through Sol-Gel Technique Using Glycerol and Glyceryl Monostearate As Templates Eliana Cardona Luis Rios. Año, 75, 207–216.
Pieła, A., Żymańczyk-duda, E., Brzezińska-rodak, M., & Duda, M. (2020). Bioorganic Chemistry Biogenic synthesis of silica nanoparticles from corn cobs husks . Dependence of the productivity on the method of raw material processing. Bioorganic Chemistry, 99(October 2019), 103773. https://doi.org/10.1016/j.bioorg.2020.103773
Rasmussen, C. J., Vishnyakov, A., Thommes, M., Smarsly, B. M., Kleitz, F., & Neimark, A. V. (2010). Cavitation in Metastable Liquid Nitrogen Confined to Nanoscale Pores. 26(12), 10147–10157. https://doi.org/10.1021/la100268q
Rodrigues, S., Uma, S., Martyanov, I. N., & Klabunde, K. J. (2004). Visible light induced photocatalytic activity for degradation of acetaldehyde using transition metal incorporated Al-MCM-41 ( aluminum doped silica zeolitic material ). 165, 51–58. https://doi.org/10.1016/j.jphotochem.2003.11.010
Sohrabnezhad, S., Jafarzadeh, A., & Pourahmad, A. (2018). Synthesis and characterization of MCM-41 ropes. Materials Letters, 212, 16–19. https://doi.org/10.1016/j.matlet.2017.10.059
Thommes, M., Kaneko, K., Neimark, A. V., Olivier, J. P., Rodriguez-Reinoso, F., Rouquerol, J., & Sing, K. S. W. (2015). Physisorption of gases, with special reference to the evaluation of surface area and pore size distribution (IUPAC Technical Report). Pure and Applied Chemistry, 87(9–10), 1051–1069. https://doi.org/10.1515/PAC-2014-1117/MACHINEREADABLECITATION/RIS
Vaschetto, Ochoa Rodríguez, Pérez Pariente, E. (2023). Engineering more sustainable catalysts based in ecological and economic synthesis routes from renewable raw material: Novel mesoporous silicas for remediation technologies. Microporous and Mesoporous Materials, 360, 112719. https://doi.org/10.1016/J.MICROMESO.2023.112719
Vaschetto, E. G., Casuscelli, S. G., & Eimer, G. A. (2018). Acidity versus catalytic activity in bi-structured nanomaterials. Microporous and Mesoporous Materials, 268(November 2017), 170–177. https://doi.org/10.1016/j.micromeso.2018.04.028
Vaschetto, E. G., Casuscelli, S. G., Ferrero, G. O., & Eimer, G. A. (2023). Design of catalysts with controlled porosity and variable acidity for the synthesis of industrialized products. Chemical Physics Letters, 825(May), 140611. https://doi.org/10.1016/j.cplett.2023.140611
Vaschetto, E. G., Monti, G. A., Herrero, E. R., Casuscelli, S. G., & Eimer, G. A. (2013). Influence of the synthesis conditions on the physicochemical properties and acidity of Al-MCM-41 as catalysts for the cyclohexanone oxime rearrangement. Applied Catalysis A: General, 453, 391–402. https://doi.org/10.1016/j.apcata.2012.12.016
Vaschetto, E., Monti, G. A., Herrero, E. R., Casuscelli, S. G., & Eimer, G. A. (2013). Applied Catalysis A : General Influence of the synthesis conditions on the physicochemical properties and acidity of Al-MCM-41 as catalysts for the cyclohexanone oxime rearrangement. “Applied Catalysis A, General,” 453, 391–402. https://doi.org/10.1016/j.apcata.2012.12.016
Vaschetto, E., Pecchi, G. A., Casuscelli, S. G., & Eimer, G. A. (2014). Nature of the active sites in Al-MCM-41 nano-structured catalysts for the selective rearrangement of cyclohexanone oxime toward ε-caprolactam. Microporous and Mesoporous Materials, 200, 110–116. https://doi.org/10.1016/j.micromeso.2014.08.030
Villarroel-rocha, J., Barrera, D., & Sapag, K. (2014). Microporous and Mesoporous Materials Introducing a self-consistent test and the corresponding modification in the Barrett , Joyner and Halenda method for pore-size determination. MICROPOROUS AND MESOPOROUS MATERIALS, 200, 68–78. https://doi.org/10.1016/j.micromeso.2014.08.017
Weglarski, J., Datka, J., He, H., & Klinowski, J. (1996). IR spectroscopic studies of the acidic properties of the mesoporous molecular sieve MCM-41. Journal of the Chemical Society - Faraday Transactions, 92(24), 5161–5164. https://doi.org/10.1039/ft9969205161
Xiang Wei-Dong,z Yang Yu-Xiang,w,z,y Chen Jing,y Wang Zhaolun, z and L. X.-N. (2008). Preparation of Mesoporous Silica Using Amphoteric Surfactant Potassium and Sodium N-Dodecyl Glycine Template. The American Ceramic Society Preparation, 1521(23527), 1517–1521. https://doi.org/10.1111/j.1551-2916.2008.02356.x
Yeletsky, P. M., Yakovlev, V. A., Mel’gunov, M. S., & Parmon, V. N. (2009). Synthesis of mesoporous carbons by leaching out natural silica templates of rice husk. Microporous and Mesoporous Materials, 121(1–3), 34–40. https://doi.org/10.1016/j.micromeso.2008.12.025
Zhang, H., Dong, Y., Fang, W., & Lian, Y. (2013). Effects of composite oxide supports on catalytic performance of Ni-based catalysts for CO methanation. Chinese Journal of Catalysis, 34(2), 330. https://doi.org/10.1016/S1872-2067(11)60485-3