Principales técnicas criptográficas aplicadas a la seguridad de la información en IoT: una revisión sistemática

Contenido principal del artículo

Percy Olivarez Geronimo Dionicio
Alfredo José Lezcano Gil
Alberto Carlos Mendoza De Los Santos

Resumen

Este artículo de revisión proporciona una visión exhaustiva de las principales técnicas criptográficas aplicadas a la seguridad de la información en el Internet de las Cosas (IoT) analizando diferentes artículos de investigación recopilados de diversas bases de datos académicas, incluyendo MDPI, Scopus Y ScienceDirect.


El cifrado de curva elíptica se encontró como una opción para entornos donde se tienen pocos recursos y se quiere se lo más eficiente posible, mientras que el uso de AES es fundamental para priorizar la seguridad ya que esta técnica de cifrado brinda confiabilidad al ser un estándar con muchas investigaciones que avalan su efectividad en la seguridad de datos en IoT. Por último se muestra al cifrado hash que permite tener datos más integrados y totalmente auténticos dentro de los entornos IoT, acoplándose a otras técnicas de cifrado como ECC, AES, RSA, etc.


Los resultados obtenidos también revelan la necesidad de avanzar en la exploración de enfoques de cifrado cuántico y técnicas de aprendizaje automático para lograr una detección y prevención efectiva de amenazas en tiempo real en entornos IoT, así como también es crucial evaluar la eficacia de estas técnicas en escenarios IoT más diversos y heterogéneos.

Detalles del artículo

Cómo citar
Olivarez Geronimo Dionicio, P., Lezcano Gil, A. J., & Mendoza De Los Santos, A. C. (2023). Principales técnicas criptográficas aplicadas a la seguridad de la información en IoT: una revisión sistemática. Ingenio Tecnológico, 5, e041. Recuperado a partir de https://ingenio.frlp.utn.edu.ar/index.php/ingenio/article/view/80
Sección
Artículos

Citas

Abdur, M., Habib, S., Ali, M., & Ullah, S. (2017). Security issues in the internet of things (IoT): A comprehensive study. International Journal of Advanced Computer Science and Applications : IJACSA, 8(6). https://doi.org/10.14569/ijacsa.2017.080650

Aiyshwariya Devi, R., & Arunachalam, A. R. (2023). Enhancement of IoT device security using an Improved Elliptic Curve Cryptography algorithm and malware detection utilizing deep LSTM. High-Confidence Computing, 3(2), 100117. https://doi.org/10.1016/j.hcc.2023.100117

Al Hwaitat, A. K., Almaiah, M. A., Ali, A., Al-Otaibi, S., Shishakly, R., Lutfi, A., & Alrawad, M. (2023). A new blockchain-based authentication framework for secure IoT networks. Electronics, 12(17), 3618. https://doi.org/10.3390/electronics12173618

Ali, U., Idris, M. Y. I. B., Frnda, J., Ayub, M. N. B., Khan, M. A., Khan, N., Beegum T, R., Jasim, A. A., Ullah, I., & Babar, M. (2023). Enhanced lightweight and secure certificateless authentication scheme (ELWSCAS) for Internet of Things environment. Internet of Things, 24(100923), 100923. https://doi.org/10.1016/j.iot.2023.100923

Bhan, R., Pamula, R., Faruki, P., & Gajrani, J. (2023). Blockchain-enabled secure and efficient data sharing scheme for trust management in healthcare smartphone network. The Journal of Supercomputing, 79(14), 16233–16274. https://doi.org/10.1007/s11227-023-05272-6

Bhatt, A. P., & Sharma, A. (2019). Quantum Cryptography for Internet of Things Security. Journal of Electronic Science and Technology, 17(3), 213-220. https://doi.org/10.11989/JEST.1674-862X.90523016

Caraveo-Cacep, M. A., Vázquez-Medina, R., & Hernández Zavala, A. (2023). A survey on low-cost development boards for applying cryptography in IoT systems. Internet of Things, 22(100743), 100743. https://doi.org/10.1016/j.iot.2023.100743

Chauhan, C., Ramaiya, M. K., Rajawat, A. S., Goyal, S. B., Verma, C., & Raboaca, M. S. (2022). Improving IoT security using elliptic curve integrated encryption scheme with primary structure-based block chain technology. Procedia Computer Science, 215, 488–498. https://doi.org/10.1016/j.procs.2022.12.051

Choi, J., Lee, J., & Kim, A. (2023). An efficient confidence interval-based dual-key fuzzy vault scheme for operator authentication of autonomous unmanned aerial vehicles. Applied Sciences, 13(15), 8894. https://doi.org/10.3390/app13158894

Ettiyan, R., & Geetha. (2023). A hybrid logistic DNA-based encryption system for securing the Internet of Things patient monitoring systems. Healthcare Analytics, 3(100149), 100149. https://doi.org/10.1016/j.health.2023.100149

Huo, X., & Wang, X. (2023). Internet of things for smart manufacturing based on advanced encryption standard (AES) algorithm with chaotic system. Results in Engineering, 20(101589), 101589. https://doi.org/10.1016/j.rineng.2023.101589

Hussain, S., & Mohideen S, P. (2023). SCMD suspicious cryptographic message detection. Measurement:Sensors, 29(100863), 100863. https://doi.org/10.1016/j.measen.2023.100863

Índice de Inteligencia de Amenazas de IBM Security X-Force de 2023. (2023). Ibm.com. Recuperado el 28 de noviembre de 2023, de https://www.ibm.com/es-es/reports/threat-intelligence

Khalifa, M., Algarni, F., Ayoub Khan, M., Ullah, A., & Aloufi, K. (2021). A lightweight cryptography (LWC) framework to secure memory heap in Internet of Things. Alexandria Engineering Journal, 60(1), 1489–1497. https://doi.org/10.1016/j.aej.2020.11.003

Liestyowati, D. (2020). Public Key Cryptography. Journal of physics. Conference series, 1477(5), 052062. https://doi.org/10.1088/1742-6596/1477/5/052062

Manzoor, A., Braeken, A., Kanhere, Ylianttila, M., & Liyanage, M. (2021). Proxy re-encryption enabled secure and anonymous IoT data sharing platform based on blockchain. Journal of Network and Computer Applications, 176(102917), 102917. https://doi.org/10.1016/j.jnca.2020.102917

Margelis, G., Fafoutis, X., Oikonomou, G., Piechocki, R., Tryfonas, T., & Thomas, P. (2019). Efficient DCT-based secret key generation for the Internet of Things. Ad Hoc Networks, 92(101744), 101744. https://doi.org/10.1016/j.adhoc.2018.08.014

Martínez-Santander, C. J., & Cruz-Gavilánez, Y. de la N. (2018). Tendencias tecnológicas y desafíos de la seguridad informática. Polo del Conocimiento, 3(5), 260. https://doi.org/10.23857/pc.v3i5.640

Masud, M., Gaba, G. S., Kumar, P., & Gurtov, A. (2022). A user-centric privacy-preserving authentication protocol for IoT-AmI environments. Computer Communications, 196, 45–54. https://doi.org/10.1016/j.comcom.2022.09.021

Mohammad Shah, I. N., Ismail, E. S., Samat, F., & Nek Abd Rahman, N. (2023). Modified generalized Feistel network block cipher for the Internet of Things. Symmetry, 15(4), 900. https://doi.org/10.3390/sym15040900

Nita, S. L., & Mihailescu, M. I. (2023). Elliptic curve-based query authentication protocol for IoT devices aided by blockchain. Sensors (Basel, Switzerland), 23(3), 1371. https://doi.org/10.3390/s23031371

Page, M. J., McKenzie, J. E., Bossuyt, P. M., Boutron, I., Hoffmann, T. C., Mulrow, C. D., Shamseer, L., Tetzlaff, J. M., Akl, E. A., Brennan, S. E., Chou, R., Glanville, J., Grimshaw, J. M., Hróbjartsson, A., Lalu, M. M., Li, T., Loder, E. W., Mayo-Wilson, E., McDonald, S., ... Moher, D. (2021). The PRISMA 2020 statement: An updated guideline for reporting systematic reviews. Journal of Clinical Epidemiology, 134, 178–189. https://doi.org/10.1016/j.jclinepi.2021.03.001

Parmar, M., & Shah, P. (2023). Internet of things-blockchain lightweight cryptography to data security and integrity for intelligent application. International Journal of Electrical and Computer Engineering (IJECE), 13(4), 4422. https://doi.org/10.11591/ijece.v13i4.pp4422-4431

Prakasam, Madheswaran, Sujith, & Sayeed, M. S. (2021). An Enhanced Energy Efficient Lightweight Cryptography Method for various IoT devices. ICT Express, 7(4), 487–492. https://doi.org/10.1016/j.icte.2021.03.007

Ramyasri, G., Ramana Murthy, G., Itapu, S., & Mohan Krishna, S. (2023). Data transmission using secure hybrid techniques for smart energy metering devices. E-Prime - Advances in Electrical Engineering, Electronics and Energy, 4(100134), 100134. https://doi.org/10.1016/j.prime.2023.100134

Rana, S., Mondal, M. & Kamruzzaman, J. (2023). RBFK cipher: a randomized butterfly architecture-based lightweight block cipher for IoT devices in the edge computing environment. Cybersecurity, 6(1). https://doi.org/10.1186/s42400-022-00136-7

Rehman, M. U., Shafique, A., & Usman, A. B. (2023). Securing medical information transmission between IoT devices: An innovative hybrid encryption scheme based on quantum walk, DNA encoding, and chaos. Internet of Things, 24(100891), 100891. https://doi.org/10.1016/j.iot.2023.100891

Román, R., Arjona, R., & Baturone, I. (2023). A lightweight remote attestation using PUFs and hash-based signatures for low-end IoT devices. Future Generations Computer Systems: FGCS, 148, 425–435. https://doi.org/10.1016/j.future.2023.06.008

Sahoo, S., Mohanty, S., Sahoo, K., Daneshmand, M., & Gandomi, A. H. (2023). A three-factor-based authentication scheme of 5G wireless sensor networks for IoT system. IEEE internet of things journal, 10(17), 15087–15099. https://doi.org/10.1109/jiot.2023.3264565

Shilpa, Vidya, & Pattar, S. (2022). MQTT based secure transport layer communication for mutual authentication in IoT network. Global Transitions Proceedings, 3(1), 60–66. https://doi.org/10.1016/j.gltp.2022.04.015

Shukla, S., Thakur, S., Hussain, S., Breslin, J. G., & Jameel, S. M. (2021). Identification and authentication in healthcare internet-of-things using integrated fog computing based blockchain model. Internet of Things, 15(100422), 100422. https://doi.org/10.1016/j.iot.2021.100422

Subashini, A., & Kanaka Raju, P. (2023). Hybrid AES model with elliptic curve and ID based key generation for IOT in telemedicine. Measurement: Sensors, 28(100824), 100824. https://doi.org/10.1016/j.measen.2023.100824

Subramaniam, E. V. D., Srinivasan, K., Qaisar, S. M., & Pławiak, P. (2023). Interoperable IoMT approach for remote diagnosis with privacy-preservation perspective in edge systems. Sensors, 23(17), 7474. https://doi.org/10.3390/s23177474

Tezcan, C. (2022). Key lengths revisited: GPU-based brute force cryptanalysis of DES, 3DES, and PRESENT. Journal of Systems Architecture, 124(102402), 102402. https://doi.org/10.1016/j.sysarc.2022.102402

Ullah, F., & Pun, C.-M. (2023). Deep self-learning based dynamic secret key generation for novel secure and efficient hashing algorithm. Information Sciences, 629, 488–501. https://doi.org/10.1016/j.ins.2023.02.007

Vaidya, S., Suri, A., Batla, V., Keshta, I., Ajibade, S.-S. M., & Safarov, G. (2023). A computer-aided feature-based encryption model with concealed access structure for medical Internet of Things. Decision Analytics Journal, 7(100257), 100257. https://doi.org/10.1016/j.dajour.2023.100257

Yan, J., Lin, W., Tu, X., & Wu, Q. (2023). IoT-based interaction design of smart home products for elderly families. Applied Mathematics and Nonlinear Sciences. https://doi.org/10.2478/amns.2023.1.00196

Yang, Y.-S., Lee, S.-H., Wang, J.-M., Yang, C.-S., Huang, Y.-M., & Hou, T.-W. (2023). Lightweight authentication mechanism for industrial IoT environment combining elliptic curve cryptography and trusted token. Sensors, 23(10), 4970. https://doi.org/10.3390/s23104970