Principales técnicas criptográficas aplicadas a la seguridad de la información en IoT: una revisión sistemática

Main Article Content

Percy Olivarez Geronimo Dionicio
Alfredo José Lezcano Gil
Alberto Carlos Mendoza De Los Santos

Abstract

This review article provides a comprehensive overview of the main cryptographic techniques applied to information security in the Internet of Things (IoT), analyzing various research articles gathered from diverse academic databases, including MDPI, Scopus, and ScienceDirect.


Elliptic curve encryption was identified as an option for environments with limited resources, aiming to be as efficient as possible. Meanwhile, the use of AES is crucial to prioritize security, as this encryption technique provides reliability by being a standard with numerous studies supporting its effectiveness in securing data in IoT. Finally, hash encryption is highlighted for enabling more integrated and completely authentic data within IoT environments, complementing other encryption techniques such as ECC, AES, RSA, etc.


The results obtained also reveal the need to advance exploration into quantum encryption approaches and machine learning techniques to achieve effective real-time detection and prevention of threats in IoT environments. It is crucial to evaluate the effectiveness of these techniques in more diverse and heterogeneous IoT scenarios.

Article Details

How to Cite
Olivarez Geronimo Dionicio, P., Lezcano Gil, A. J., & Mendoza De Los Santos, A. C. (2023). Principales técnicas criptográficas aplicadas a la seguridad de la información en IoT: una revisión sistemática. Ingenio Tecnológico, 5, e041. Retrieved from https://ingenio.frlp.utn.edu.ar/index.php/ingenio/article/view/80
Section
Artículos

References

Abdur, M., Habib, S., Ali, M., & Ullah, S. (2017). Security issues in the internet of things (IoT): A comprehensive study. International Journal of Advanced Computer Science and Applications : IJACSA, 8(6). https://doi.org/10.14569/ijacsa.2017.080650

Aiyshwariya Devi, R., & Arunachalam, A. R. (2023). Enhancement of IoT device security using an Improved Elliptic Curve Cryptography algorithm and malware detection utilizing deep LSTM. High-Confidence Computing, 3(2), 100117. https://doi.org/10.1016/j.hcc.2023.100117

Al Hwaitat, A. K., Almaiah, M. A., Ali, A., Al-Otaibi, S., Shishakly, R., Lutfi, A., & Alrawad, M. (2023). A new blockchain-based authentication framework for secure IoT networks. Electronics, 12(17), 3618. https://doi.org/10.3390/electronics12173618

Ali, U., Idris, M. Y. I. B., Frnda, J., Ayub, M. N. B., Khan, M. A., Khan, N., Beegum T, R., Jasim, A. A., Ullah, I., & Babar, M. (2023). Enhanced lightweight and secure certificateless authentication scheme (ELWSCAS) for Internet of Things environment. Internet of Things, 24(100923), 100923. https://doi.org/10.1016/j.iot.2023.100923

Bhan, R., Pamula, R., Faruki, P., & Gajrani, J. (2023). Blockchain-enabled secure and efficient data sharing scheme for trust management in healthcare smartphone network. The Journal of Supercomputing, 79(14), 16233–16274. https://doi.org/10.1007/s11227-023-05272-6

Bhatt, A. P., & Sharma, A. (2019). Quantum Cryptography for Internet of Things Security. Journal of Electronic Science and Technology, 17(3), 213-220. https://doi.org/10.11989/JEST.1674-862X.90523016

Caraveo-Cacep, M. A., Vázquez-Medina, R., & Hernández Zavala, A. (2023). A survey on low-cost development boards for applying cryptography in IoT systems. Internet of Things, 22(100743), 100743. https://doi.org/10.1016/j.iot.2023.100743

Chauhan, C., Ramaiya, M. K., Rajawat, A. S., Goyal, S. B., Verma, C., & Raboaca, M. S. (2022). Improving IoT security using elliptic curve integrated encryption scheme with primary structure-based block chain technology. Procedia Computer Science, 215, 488–498. https://doi.org/10.1016/j.procs.2022.12.051

Choi, J., Lee, J., & Kim, A. (2023). An efficient confidence interval-based dual-key fuzzy vault scheme for operator authentication of autonomous unmanned aerial vehicles. Applied Sciences, 13(15), 8894. https://doi.org/10.3390/app13158894

Ettiyan, R., & Geetha. (2023). A hybrid logistic DNA-based encryption system for securing the Internet of Things patient monitoring systems. Healthcare Analytics, 3(100149), 100149. https://doi.org/10.1016/j.health.2023.100149

Huo, X., & Wang, X. (2023). Internet of things for smart manufacturing based on advanced encryption standard (AES) algorithm with chaotic system. Results in Engineering, 20(101589), 101589. https://doi.org/10.1016/j.rineng.2023.101589

Hussain, S., & Mohideen S, P. (2023). SCMD suspicious cryptographic message detection. Measurement:Sensors, 29(100863), 100863. https://doi.org/10.1016/j.measen.2023.100863

Índice de Inteligencia de Amenazas de IBM Security X-Force de 2023. (2023). Ibm.com. Recuperado el 28 de noviembre de 2023, de https://www.ibm.com/es-es/reports/threat-intelligence

Khalifa, M., Algarni, F., Ayoub Khan, M., Ullah, A., & Aloufi, K. (2021). A lightweight cryptography (LWC) framework to secure memory heap in Internet of Things. Alexandria Engineering Journal, 60(1), 1489–1497. https://doi.org/10.1016/j.aej.2020.11.003

Liestyowati, D. (2020). Public Key Cryptography. Journal of physics. Conference series, 1477(5), 052062. https://doi.org/10.1088/1742-6596/1477/5/052062

Manzoor, A., Braeken, A., Kanhere, Ylianttila, M., & Liyanage, M. (2021). Proxy re-encryption enabled secure and anonymous IoT data sharing platform based on blockchain. Journal of Network and Computer Applications, 176(102917), 102917. https://doi.org/10.1016/j.jnca.2020.102917

Margelis, G., Fafoutis, X., Oikonomou, G., Piechocki, R., Tryfonas, T., & Thomas, P. (2019). Efficient DCT-based secret key generation for the Internet of Things. Ad Hoc Networks, 92(101744), 101744. https://doi.org/10.1016/j.adhoc.2018.08.014

Martínez-Santander, C. J., & Cruz-Gavilánez, Y. de la N. (2018). Tendencias tecnológicas y desafíos de la seguridad informática. Polo del Conocimiento, 3(5), 260. https://doi.org/10.23857/pc.v3i5.640

Masud, M., Gaba, G. S., Kumar, P., & Gurtov, A. (2022). A user-centric privacy-preserving authentication protocol for IoT-AmI environments. Computer Communications, 196, 45–54. https://doi.org/10.1016/j.comcom.2022.09.021

Mohammad Shah, I. N., Ismail, E. S., Samat, F., & Nek Abd Rahman, N. (2023). Modified generalized Feistel network block cipher for the Internet of Things. Symmetry, 15(4), 900. https://doi.org/10.3390/sym15040900

Nita, S. L., & Mihailescu, M. I. (2023). Elliptic curve-based query authentication protocol for IoT devices aided by blockchain. Sensors (Basel, Switzerland), 23(3), 1371. https://doi.org/10.3390/s23031371

Page, M. J., McKenzie, J. E., Bossuyt, P. M., Boutron, I., Hoffmann, T. C., Mulrow, C. D., Shamseer, L., Tetzlaff, J. M., Akl, E. A., Brennan, S. E., Chou, R., Glanville, J., Grimshaw, J. M., Hróbjartsson, A., Lalu, M. M., Li, T., Loder, E. W., Mayo-Wilson, E., McDonald, S., ... Moher, D. (2021). The PRISMA 2020 statement: An updated guideline for reporting systematic reviews. Journal of Clinical Epidemiology, 134, 178–189. https://doi.org/10.1016/j.jclinepi.2021.03.001

Parmar, M., & Shah, P. (2023). Internet of things-blockchain lightweight cryptography to data security and integrity for intelligent application. International Journal of Electrical and Computer Engineering (IJECE), 13(4), 4422. https://doi.org/10.11591/ijece.v13i4.pp4422-4431

Prakasam, Madheswaran, Sujith, & Sayeed, M. S. (2021). An Enhanced Energy Efficient Lightweight Cryptography Method for various IoT devices. ICT Express, 7(4), 487–492. https://doi.org/10.1016/j.icte.2021.03.007

Ramyasri, G., Ramana Murthy, G., Itapu, S., & Mohan Krishna, S. (2023). Data transmission using secure hybrid techniques for smart energy metering devices. E-Prime - Advances in Electrical Engineering, Electronics and Energy, 4(100134), 100134. https://doi.org/10.1016/j.prime.2023.100134

Rana, S., Mondal, M. & Kamruzzaman, J. (2023). RBFK cipher: a randomized butterfly architecture-based lightweight block cipher for IoT devices in the edge computing environment. Cybersecurity, 6(1). https://doi.org/10.1186/s42400-022-00136-7

Rehman, M. U., Shafique, A., & Usman, A. B. (2023). Securing medical information transmission between IoT devices: An innovative hybrid encryption scheme based on quantum walk, DNA encoding, and chaos. Internet of Things, 24(100891), 100891. https://doi.org/10.1016/j.iot.2023.100891

Román, R., Arjona, R., & Baturone, I. (2023). A lightweight remote attestation using PUFs and hash-based signatures for low-end IoT devices. Future Generations Computer Systems: FGCS, 148, 425–435. https://doi.org/10.1016/j.future.2023.06.008

Sahoo, S., Mohanty, S., Sahoo, K., Daneshmand, M., & Gandomi, A. H. (2023). A three-factor-based authentication scheme of 5G wireless sensor networks for IoT system. IEEE internet of things journal, 10(17), 15087–15099. https://doi.org/10.1109/jiot.2023.3264565

Shilpa, Vidya, & Pattar, S. (2022). MQTT based secure transport layer communication for mutual authentication in IoT network. Global Transitions Proceedings, 3(1), 60–66. https://doi.org/10.1016/j.gltp.2022.04.015

Shukla, S., Thakur, S., Hussain, S., Breslin, J. G., & Jameel, S. M. (2021). Identification and authentication in healthcare internet-of-things using integrated fog computing based blockchain model. Internet of Things, 15(100422), 100422. https://doi.org/10.1016/j.iot.2021.100422

Subashini, A., & Kanaka Raju, P. (2023). Hybrid AES model with elliptic curve and ID based key generation for IOT in telemedicine. Measurement: Sensors, 28(100824), 100824. https://doi.org/10.1016/j.measen.2023.100824

Subramaniam, E. V. D., Srinivasan, K., Qaisar, S. M., & Pławiak, P. (2023). Interoperable IoMT approach for remote diagnosis with privacy-preservation perspective in edge systems. Sensors, 23(17), 7474. https://doi.org/10.3390/s23177474

Tezcan, C. (2022). Key lengths revisited: GPU-based brute force cryptanalysis of DES, 3DES, and PRESENT. Journal of Systems Architecture, 124(102402), 102402. https://doi.org/10.1016/j.sysarc.2022.102402

Ullah, F., & Pun, C.-M. (2023). Deep self-learning based dynamic secret key generation for novel secure and efficient hashing algorithm. Information Sciences, 629, 488–501. https://doi.org/10.1016/j.ins.2023.02.007

Vaidya, S., Suri, A., Batla, V., Keshta, I., Ajibade, S.-S. M., & Safarov, G. (2023). A computer-aided feature-based encryption model with concealed access structure for medical Internet of Things. Decision Analytics Journal, 7(100257), 100257. https://doi.org/10.1016/j.dajour.2023.100257

Yan, J., Lin, W., Tu, X., & Wu, Q. (2023). IoT-based interaction design of smart home products for elderly families. Applied Mathematics and Nonlinear Sciences. https://doi.org/10.2478/amns.2023.1.00196

Yang, Y.-S., Lee, S.-H., Wang, J.-M., Yang, C.-S., Huang, Y.-M., & Hou, T.-W. (2023). Lightweight authentication mechanism for industrial IoT environment combining elliptic curve cryptography and trusted token. Sensors, 23(10), 4970. https://doi.org/10.3390/s23104970