Bases para el desarrollo y aplicación de Gemelos Digitales en la industria de la energía eléctrica

Contenido principal del artículo

Gonzalo Alvarez
Dan Kröhling
Ernesto Martinez


En la actualidad, la expansión y mejora de los sistemas de energía eléctrica se realiza de manera integral. Esto hace que en los sistemas actuales se busque la incorporación de nuevas tecnologías y enfoques en el marco de la Industria 4.0. A raíz de esto, una de las tecnologías que ha cobrado importancia en los últimos años es la de los llamados gemelos digitales.

Un gemelo digital es una representación virtual, parcial o completa, de un sistema físico o proceso que permanentemente evoluciona a la par del sistema o proceso real. Un vehículo, una turbina eólica o una ciudad entera pueden representarse mediante gemelos digitales. Para implementar y operar estos gemelos digitales es necesaria la utilización de sensores en el sistema físico o proceso para recoger información en tiempo real del estado de funcionamiento que permite adaptar el comportamiento simulado.

Este estudio tiene como objetivo promover la aplicación de la tecnología de gemelos digitales en sistemas eléctricos, además de discutir los desafíos para su implementación. Se presenta una propuesta para el desarrollo y aplicación de la tecnología de gemelos digitales en diferentes campos, con preferencia en el de la generación eléctrica.

Detalles del artículo

Cómo citar
Alvarez, G., Kröhling, D., & Martinez, E. (2023). Bases para el desarrollo y aplicación de Gemelos Digitales en la industria de la energía eléctrica. Ingenio Tecnológico, 5, e043. Recuperado a partir de
Trabajos destacados del “XI Seminario de Energía y su Uso Eficiente”


Al-Waisi, Z., & Agyeman, M. O. (2018). On the Challenges and Opportunities of Smart Meters in Smart Homes and Smart Grids. Proceedings of the 2nd International Symposium on Computer Science and Intelligent Control, 1–6.

Alvarez, G. (2022). Integrated modeling of the peer-to-peer markets in the energy industry. International Journal of Industrial Engineering Computations, 13(1), 101–118.

Batty, M. (2018). Digital twins. Environment and Planning B: Urban Analytics and City Science, 45(5), 817–820.

Bridge, G., & Gailing, L. (2020). New energy spaces: Towards a geographical political economy of energy transition. Environment and Planning A: Economy and Space, 52(6), 1037–1050.

Cacciari, M., & Singhal, R. (2022, October 31). How Can Digital Technologies Help Companies Overcome the Decarbonization Challenges? Day 2 Tue, November 01, 2022.

Chakraborty, S., & Adhikari, S. (2021). Machine learning based digital twin for dynamical systems with multiple time-scales. Computers & Structures, 243, 106410.

Chow, J. H., & Sanchez‐Gasca, J. J. (2019). Power System Modeling, Computation, and Control. Wiley.

Cioara, T., Anghel, I., Antal, M., Salomie, I., Antal, C., & Ioan, A. G. (2021). An Overview of Digital Twins Application Domains in Smart Energy Grid.

Darbali-Zamora, R., Johnson, J., Summers, A., Jones, C. B., Hansen, C., & Showalter, C. (2021). State Estimation-Based Distributed Energy Resource Optimization for Distribution Voltage Regulation in Telemetry-Sparse Environments Using a Real-Time Digital Twin. Energies, 14(3), 774.

DHL. (2022). Digital Twins. Insights & Innovation. unique%2C virtual representations of,maintain their assets more effectively.

Fichera, A., Pluchino, A., & Volpe, R. (2020). From self-consumption to decentralized distribution among prosumers: A model including technological, operational and spatial issues. Energy Conversion and Management, 217, 112932.

Galuzin, V., Galitskaya, A., Grachev, S., Larukhin, V., Novichkov, D., Skobelev, P., & Zhilyaev, A. (2022). Autonomous Digital Twin of Enterprise: Method and Toolset for Knowledge-Based Multi-Agent Adaptive Management of Tasks and Resources in Real Time. Mathematics, 10(10), 1662.

Gelernter, D. (1991). Mirror Worlds: Or the Day Software Puts the Universe in a Shoebox...How It Will Happen and What It Will Mean. Oxford University Press.

Ghenai, C., Husein, L. A., Al Nahlawi, M., Hamid, A. K., & Bettayeb, M. (2022). Recent trends of digital twin technologies in the energy sector: A comprehensive review. Sustainable Energy Technologies and Assessments, 54, 102837.

Grieves, M. (2016). Origins of the Digital Twin Concept. Florida Institute of Technology / NASA.

Hamid, I., Alam, M. S., Kanwal, A., Jena, P. K., Murshed, M., & Alam, R. (2022). Decarbonization pathways: the roles of foreign direct investments, governance, democracy, economic growth, and renewable energy transition. Environmental Science and Pollution Research, 29(33), 49816–49831.

Hart, W. E., Watson, J.-P., & Woodruff, D. L. (2011). Pyomo: modeling and solving mathematical programs in Python. Mathematical Programming Computation, 3(3), 219–260.

Kaur, M. J., Mishra, V. P., & Maheshwari, P. (2020). The Convergence of Digital Twin, IoT, and Machine Learning: Transforming Data into Action (pp. 3–17).

Kröhling, D. E., Chiotti, O. J. A., & Martínez, E. C. (2023). Artificial Theory of Mind in contextual automated negotiations within peer-to-peer markets. Engineering Applications of Artificial Intelligence, 120, 105887.

Kröhling, D. E., & Martínez, E. C. (2019). Contract Settlements for Exchanging Utilities through Automated Negotiations between Prosumers in Eco-Industrial Parks using Reinforcement Learning (pp. 1675–1680).

Kröhling, D. E., Mione, F., Hernández, F., & Martínez, E. C. (2022). A peer-to-peer market for utility exchanges in Eco-Industrial Parks using automated negotiations. Expert Systems with Applications, 191(September 2021), 116211.

Ladj, A., Wang, Z., Meski, O., Belkadi, F., Ritou, M., & Da Cunha, C. (2021). A knowledge-based Digital Shadow for machining industry in a Digital Twin perspective. Journal of Manufacturing Systems, 58(August), 168–179.

McKenna, E., & Thomson, M. (2016). High-resolution stochastic integrated thermal–electrical domestic demand model. Applied Energy, 165, 445–461.

Palensky, P., Cvetkovic, M., Gusain, D., & Joseph, A. (2022). Digital twins and their use in future power systems. Digital Twin, 1, 4.

Papathanassiou, S., Hatziargyriou, N., & Strunz, K. (2005). A benchmark low voltage microgrid network. Proceedings of the CIGRE Symposium: Power Systems with Dispersed Generation. CIGRE, 1–8.

Plewnia, F. (2019). The Energy System and the Sharing Economy: Interfaces and Overlaps and what to Learn from them. Energies, 12(3), 339.

Podvalny, S. L., & Vasiljev, E. M. (2021). Digital twin for smart electricity distribution networks. IOP Conference Series: Materials Science and Engineering, 1035(1), 012047.

Qiao, H., Zheng, F., Jiang, H., & Dong, K. (2019). The greenhouse effect of the agriculture-economic growth-renewable energy nexus: Evidence from G20 countries. Science of The Total Environment, 671, 722–731.

Randles, B. M., Pasquetto, I. V., Golshan, M. S., & Borgman, C. L. (2017). Using the Jupyter Notebook as a Tool for Open Science: An Empirical Study. 2017 ACM/IEEE Joint Conference on Digital Libraries (JCDL), 1–2.

So much ice is melting that Earth’s crust is moving. (2021). Nature, 597(7874), 10–10.

Tao, F., & Qi, Q. (2019). Make more digital twins. Nature, 573(7775), 490–491.

Tollefson, J. (2021). IPCC climate report: Earth is warmer than it’s been in 125,000 years. Nature, 596(7871), 171–172.

Trauer, J., Schweigert-Recksiek, S., Engel, C., Spreitzer, K., & Zimmermann, M. (2020). WHAT IS A DIGITAL TWIN? – DEFINITIONS AND INSIGHTS FROM AN INDUSTRIAL CASE STUDY IN TECHNICAL PRODUCT DEVELOPMENT. Proceedings of the Design Society: DESIGN Conference, 1, 757–766.

Zhang, G., Huo, C., Zheng, L., & Li, X. (2020). An Architecture Based on Digital Twins for Smart Power Distribution System. 2020 3rd International Conference on Artificial Intelligence and Big Data (ICAIBD), 29–33.