Análisis del ciclo de vida en pavimentos: actualidad y perspectiva

Contenido principal del artículo

Ignacio Zapata Ferrero
Julián Rivera
Gerardo Botasso

Resumen

El aumento de la temperatura global, como un indicador de la constante contaminación que existe a nivel mundial, resulta un problema aun sin solución. Como medidas para mitigar este problema se proponen varias soluciones en pos de reducir el impacto que se tiene en el planeta.


El sector de los pavimentos no es ajeno a este problema, el cual genera costos ambientales importantes, ya sea en una construcción nueva o en cada intervención de mantenimiento realizada. En los últimos años, la aplicación del análisis del ciclo de vida para evaluar costos ambientales en producción de materias primas y emisiones se ha vuelto de gran importancia.


En el siguiente trabajo se realiza un análisis de la bibliografía existente del tema, para establecer los indicadores utilizados, así como su vocabulario especifico, las emisiones y los consumos contabilizados y las normas de aplicación. Además de revisar los estudios de los autores más emblemáticos dentro del área de aplicación con los pavimentos flexibles, se puede ver la ausencia de una norma propia del área de los materiales viales, que permita poner en un mismo plano todos los análisis contabilizados.

Detalles del artículo

Cómo citar
Zapata Ferrero, I., Rivera, J., & Botasso, G. (2021). Análisis del ciclo de vida en pavimentos: actualidad y perspectiva. Ingenio Tecnológico, 3, e016. Recuperado a partir de https://ingenio.frlp.utn.edu.ar/index.php/ingenio/article/view/57
Sección
Artículos

Citas

Araújo, J. P. C., Oliveira, J. R., & Silva, H. M. (2014). The importance of the use phase on the LCA of environmentally friendly solutions for asphalt road pavements. Transportation Research Part D: Transport and Environment, 32, 97-110.

Babashamsi, P., Yusoff, N. I. M., Ceylan, H., Nor, N. G. M., & Jenatabadi, H. S. (2016). Evaluation of pavement life cycle cost analysis: Review and analysis. International Journal of Pavement Research and Technology, 9(4), 241-254.

Botasso, G., & Segura, A. (2013). Estudio experimental de microaglomerado asfáltico antiderrapante modificado con NFU. Obras y proyectos, (14), 36-44.

Cao, R., Leng, Z., & Yu, H. (2019). Comparative Life Cycle Assessment of Warm Mix Technologies in Asphalt Rubber Pavements Incorporated with Uncertainty Analysis (No. 19-03712).

Galatioto, F., Huang, Y., Parry, T., Bird, R., & Bell, M. (2015). Traffic modelling in system boundary expansion of road pavement life cycle assessment. Transportation Research Part D: Transport and Environment, 36, 65-75.

Gulotta, T. M., Mistretta, M., & Praticò, F. G. (2019). A life cycle scenario analysis of different pavement technologies for urban roads. Science of the total environment, 673, 585-593.

Gschösser, F., Wallbaum, H., & Adey, B. T. (2014). Environmental analysis of new construction and maintenance processes of road pavements in Switzerland. Structure and Infrastructure Engineering, 10(1), 1-24.

Heidari, M. R., Heravi, G., & Esmaeeli, A. N. (2020). Integrating life-cycle assessment and life-cycle cost analysis to select sustainable pavement: A probabilistic model using managerial flexibilities. Journal of Cleaner Production, 254, 120046.

Huang, Y., Bird, R., & Heidrich, O. (2009). Development of a life cycle assessment tool for construction and maintenance of asphalt pavements. Journal of Cleaner Production, 17(2), 283-296.

International Standard Organization (ISO) (2006a). ISO 14040: 2006. International Standard ISO 14040: Environmental Management - Life Cycle Assessment: Principles and Framework, October. International Organization for Standardization, Geneva (Switzerland).

International Standard Organization (ISO) (2006b). ISO 14044:2006. International Standard ISO 14044: Environmental Management - Life Cycle Assessment: Requirements and Guidelines, October. International Organization for Standardization, Geneva (Switzerland).

Kucukvar, M., & Tatari, O. (2012). Ecologically based hybrid life cycle analysis of continuously reinforced concrete and hot-mix asphalt pavements. Transportation Research Part D: Transport and Environment, 17(1), 86-90.

Li, J., Xiao, F., Zhang, L., & Amirkhanian, S. N. (2019). Life cycle assessment and life cycle cost analysis of recycled solid waste materials in highway pavement: A review. Journal of Cleaner Production, 233, 1182-1206.

Liu, J., Li, H., Wang, Y., & Zhang, H. (2020). Integrated life cycle assessment of permeable pavement: Model development and case study. Transportation Research Part D: Transport and Environment, 85, 102381.

Lu, G., Wang, Y., Li, H., Wang, D., & Oeser, M. (2019). The environmental impact evaluation on the application of permeable pavement based on life cycle analysis. International Journal of Transportation Science and Technology, 8(4), 351-357.

Ma, F., Sha, A., Lin, R., Huang, Y., & Wang, C. (2016). Greenhouse gas emissions from asphalt pavement construction: A case study in China. International journal of environmental research and public health, 13(3), 351.

Ma, F., Dong, W., Fu, Z., Wang, R., Huang, Y., & Liu, J. (2020). Life Cycle Assessment of Greenhouse Gas Emissions from Asphalt Pavement Maintenance: A Case Study in China. Journal of Cleaner Production, 125595.

Ministerio de Desarrollo (2020). Tercer Informe Bienal de la República Argentina. República Argentina. https://www.argentina.gob.ar/ambiente/cambio-climatico/tercer-informe-bienal

Ministerio del Interior, Obras Públicas y Vivienda (2020). Manual de implementación de la metodología de Ciclo de Vida en la construcción. Presidencia de la Nación. https://www.argentina.gob.ar/ambiente/desarrollo-sostenible/vivienda/ciclo-de-vida

Nahvi, A., Pyrialakou, V. D., Anand, P., Sadati, S. S., Gkritza, K., Ceylan, H., ... & Taylor, P. C. (2019). Integrated stochastic life cycle benefit cost analysis of hydronically-heated apron pavement system. Journal of Cleaner Production, 224, 994-1003.

Nascimento, F., Gouveia, B., Dias, F., Ribeiro, F., & Silva, M. A. (2020). A method to select a road pavement structure with life cycle assessment. Journal of Cleaner Production, 271, 122210.

Rivera, J., Barbeito, S.A., Porro, A.R. (2021). Use of Reclaimed Asphalt Pavement (RAP) and oilyresidues as pavement at low temperatures for low traffic roads. Academia Letters, Article 972.

Santero, N. J., & Horvath, A. (2009). Global warming potential of pavements. Environmental Research Letters, 4(3), 034011.

Santero, N. J., Masanet, E., & Horvath, A. (2011a). Life-cycle assessment of pavements. Part I: Critical review. Resources, Conservation and Recycling, 55(9-10), 801-809.

Santero, N. J., Masanet, E., & Horvath, A. (2011b). Life-cycle assessment of pavements Part II: Filling the research gaps. Resources, Conservation and Recycling, 55(9-10), 810-818.

Santos, J., Bressi, S., Cerezo, V., Presti, D. L., & Dauvergne, M. (2018). Life cycle assessment of low temperature asphalt mixtures for road pavement surfaces: A comparative analysis. Resources, Conservation and Recycling, 138, 283-297.

Sayagh, S., Ventura, A., Hoang, T., François, D., & Jullien, A. (2010). Sensitivity of the LCA allocation procedure for BFS recycled into pavement structures. Resources, Conservation and Recycling, 54(6), 348-358.

Segura, A., Botasso, G., Raggiotti, B., Rebollo, O., Zapata Ferrero, I. (2020) Obtención de asfalto altamente modificado con polvo de NFU. XXXIXº Reunión del Asfalto.

Schlegel, T., Puiatti, D., Ritter, H. J., Lesueur, D., Denayer, C., & Shtiza, A. (2016). The limits of partial life cycle assessment studies in road construction practices: A case study on the use of hydrated lime in Hot Mix Asphalt. Transportation Research Part D: Transport and Environment, 48, 141-160.

Silva, H. M., Oliveira, J. R., & Jesus, C. M. (2012). Are totally recycled hot mix asphalts a sustainable alternative for road paving? Resources, Conservation and Recycling, 60, 38-48.

Tokede, O. O., Whittaker, A., Mankaa, R., & Traverso, M. (2020). Life cycle assessment of asphalt variants in infrastructures: The case of lignin in Australian road pavements. Structures, 25(junio), 190-199

Transportation Officials. (1993). AASHTO Guide for Design of Pavement Structures, 1993 (Vol. 1). AASHTO.

Umer, A., Hewage, K., Haider, H., & Sadiq, R. (2017). Sustainability evaluation framework for pavement technologies: An integrated life cycle economic and environmental trade-off analysis. Transportation Research Part D: Transport and Environment, 53, 88-101.

Ventura, A., & Jullien, A. (2009). Life Cycle Assessment applied to road pavements: an analysis of method and results relevancy. Mairepav 6 the Sixth International Conference on maintenance and rehabilitation of pavements and technological control. Torino, Italy. https://www.researchgate.net/publication/257536831_Life_Cycle_Assessment_Applied_to_Road_Pavements_An_Analysis_of_Method_and_Results_Relevancy

Xu, X., Akbarian, M., Gregory, J., & Kirchain, R. (2019). Role of the use phase and pavement-vehicle interaction in comparative pavement life cycle assessment as a function of context. Journal of Cleaner Production, 230, 1156-1164.

Zheng, X., Easa, S. M., Ji, T., & Jiang, Z. (2020). Incorporating uncertainty into life-cycle sustainability assessment of pavement alternatives. Journal of Cleaner Production, 264, 121466.