Photovoltaic solar energy to produce hydrogen by electrolysis
Main Article Content
Abstract
In photovoltaic solar installations, there are usually periods in which excess electricity is produced. In off-grid systems, this excess can be stored in batteries for later use during hours of low or no production. Some technical and environmental drawbacks mean that the use of batteries is not the best solution for energy storage. An alternative approach is to use surplus electricity to produce hydrogen by electrolysis of water to generate more electricity with fuel cells. In this work, an off-grid distributed generation system composed of solar panels, an electrolyzer, a hydrogen storage tank, and a fuel cell is analyzed. The load is the consumption of a typical household in the province of Buenos Aires. The results show that it is possible to cover the entire electricity demand, without the use of the electricity grid. In addition, no battery storage is used, and it is necessary to add a natural gas reformer to complement hydrogen production.
Article Details
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
References
Andrews, J., & Shabani, B. (2012). Dimensionless analysis of the global techno-economic feasibility of solar-hydrogen systems for constant year-round power supply. International journal of hydrogen energy, 37(1), 6-18.
Blog mech, (s.f.). Future of Fuel Cells | Hydrogen Production. Recuperado de: https://blogmech.com/future-of-fuel-cells-hydrogen-production.
Comisión Nacional de Energía Atómica. (2022, diciembre). Síntesis del Mercado Eléctrico Mayorista de la República Argentina, N°232. Recuperado de: https://www.cnea.gob.ar/nuclea/bitstream/handle/10665/2489/CNEA_SPGE_sintesis_MEM_2022_22_264.pdf?sequence=1&isAllowed=y
Department of Energy, Hydrogen Storage (s.f.). Recuperado de: https://www.energy.gov/eere/fuelcells/hydrogen-storage.
Dodds, P. E., Staffell, I., Hawkes, A. D., Li, F., Grünewald, P., McDowall, W., & Ekins, P. (2015). Hydrogen and fuel cell technologies for heating: A review. International journal of hydrogen energy, 40(5), 2065-2083.
Gastiarena, M., Fazzini, A., Prieto, R., & Gil, S. (2017, abril). Petrotecnia 2/17. Gas versus Electricidad: uso de la energía en el sector residencial. Buenos Aires. Recuperado de: https://www.petrotecnia.com.ar/todas-las-revistas.html.
Hassan, Q. (2020). Optimisation of solar-hydrogen power system for household applications. International journal of hydrogen energy, 45(58), 33111-33127.
International Energy Agency (IEA). World Energy Outlook 2020. Paris: 2020. Recuperado de: https://www.iea.org/reports/world-energy-outlook-2020/outlook-for-electricity.
Maestre, V. M., Ortiz, A., & Ortiz, I. (2022). The role of hydrogen‐based power systems in the energy transition of the residential sector. Journal of Chemical Technology & Biotechnology, 97(3), 561-574.
New York State Energy Research and Development Authority. Hydrogen fact sheet, Hydrogen Production, Steam Methane Reforming (SMR) (s.f.) Recuperado de: https://www.amiqweb.es/app/download/9343795/6hydrogenproductionsteammethanereforming.pdf
Newborough, M., & Cooley, G. (2021). Green hydrogen: Water use implications and opportunities. Fuel Cells Bulletin, 2021(12), 12-15.
Osaka gas, About the fuel processing system (s.f.). Recuperado de: https://www.osakagas.co.jp/en/rd/fuelcell/pefc/reformed/index.html
Secretaría de Ambiente y Desarrollo Sustentables. Presidencia de la Nación. Inventario Nacional de GEI, (2022). Distribución por uso final. Recuperado de: https://inventariogei.ambiente.gob.ar/files/Booklet_INGEI-2022_entero.pdf