Entre sensores y sonrisas Hacia la innovación tecnológica y el aprendizaje en servicio para la protección pediátrica en crisis atónicas.

Main Article Content

Viviana Cappello
Diego Alustiza
Juan Arrospide

Abstract

This article presents the progress of the project “Between Sensors and Smiles”, aimed at developing personalized cranial protection devices for children with atonic seizures. The proposal combines 3D printing technologies, the integration of biomedical sensors, and clinical validation at the Children’s Hospital in La Plata, within the framework of an interdisciplinary collaboration with the National Technological University, La Plata Regional Faculty, under the Science Teaching Research Group. The project seeks not only to impact child health by reducing the risk of traumatic brain injuries, but also to contribute to academic training by offering students meaningful service-learning experiences. This article describes the rationale, methodology, progress achieved, and future projection of the project, highlighting its innovative and transformative character.

Article Details

How to Cite
Cappello, V. ., Alustiza, D. ., & Arrospide, . J. . (2026). Entre sensores y sonrisas Hacia la innovación tecnológica y el aprendizaje en servicio para la protección pediátrica en crisis atónicas. Ingenio Tecnológico, 8, e067. Retrieved from https://ingenio.frlp.utn.edu.ar/index.php/ingenio/article/view/163
Section
Artículos

References

Alcalá, E., Martínez, L., Rodríguez, C. J., López, A., & Neira, F. (2009). Matlab/Simulink analytical model of pyrotechnic gas generators for airbags. International Journal of Crashworthiness, 14(6), 641–657. https://doi.org/10.1080/13588260902884883

Azzolin, A., Dainese, L., & Zanotto, S. (2016). Helmet and process for manufacturing said helmet (Patente WO2016IB50270). Italia.

Cappello, V. (2019). Concepciones de los docentes universitarios de Matemática. España: Editorial Académica Española.

García, S., López, R. (2018). Innovación tecnológica accesible para la atención pediátrica en contextos vulnerables. Revista de Ingeniería Biomédica Latinoamericana, 5(2), 45–58.

Jo, S.-H., Woo, J., Byun, G.-S., Kwon, B.-S., Jeong, J.-H. (2021). A study on the application of LSTM to judge bicycle accidents for portable airbag inflation. Sensors, 21(19), 6541. https://doi.org/10.3390/s21196541

Kurt, M., Laksari, K., Kuo, C., Grant, G., & Camarillo, D. (2017). Modeling and optimization of airbag helmets for preventing head injuries in cycling. Annals of Biomedical Engineering, 45(5), 1148–1160. https://doi.org/10.1007/s10439-016-1753-4

Nemeth, B., van der Kaaij, M., Nelissen, R., van Wijnen, J. K., Drost, K., Azul, G. J. (2022). Prevention of hip fractures in elderly residents of long-term care facilities with hip airbags: A retrospective pilot study. BMC Geriatrics, 22, 547. https://doi.org/10.1186/s12877-022-03159-7

Organización Mundial de la Salud. (2019). Lesiones de tráfico. Organización Mundial de la Salud. https://www.who.int/news-room/fact-sheets/detail/road-traffic-injuries

Pérez, M., Duarte, L., Salas, V. (2020). Dispositivos de apoyo personalizados mediante tecnologías 3D en hospitales públicos. Salud y Tecnología, 12(1), 33–49.

Ribeiro, P., Almeida, T., Costa, J. (2021). Low-cost biomedical sensing for childhood neurological disorders. Journal of Pediatric Biomedical Engineering, 7(3), 120–134.

Sivaranjani, T., DhiviyaLakshmi, L., Yogaaravinth, R., Srivishnu, J., Sri Karthick, M. M., Praveenkumar, A. (2017, September 21–22). Fall assessment and injury prevention using portable airbag technology. In Proceedings of the IEEE International Conference on Energy, Control, Signals and Instrumentation Engineering (pp. xx-xx). Chennai, India: IEEE.

Tamura, T., Yoshimura, T., Sekine, M., Uchida, M., Tanaka, O. (2009). A wearable airbag to prevent fall injuries. IEEE Transactions on Information Technology in Biomedicine, 13(6), 910–914. https://doi.org/10.1109/TITB.2009.2033072

Woo, J., Jo, S.-H., Byun, G.-S., Kwon, B.-S., Jeong, J.-H. (2021). Portable airbag system for real-time recognition of bicycle driver accidents using orthogonal convolutional neural network (O-CNN). Electronics, 10(11), 1423. https://doi.org/10.3390/electronics10111423